Skip to main content
Log in

Analytical models of finite thin disks in a magnetic field

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Analytical models of axially symmetric thin disks of finite extension in the presence of magnetic field are presented based on the well-known Morgan–Morgan solutions. The source of the magnetic field is constructed separating the equation corresponding to the Ampere’s law of electrodynamics in spheroidal oblate coordinates. This produces two associated Legendre equations of first order for the magnetic potential and hence that can be expressed as a series of associated Legendre functions of the same order. The discontinuity of its normal derivate across the disk allows us to interpret the source of the magnetic field as a ringlike current distribution extended on all the plane of the disk. We also study the circular speed curves or rotation curve for equatorial circular orbits of charged test particles both inside and outside the disk. The stability of the orbits is analyzed for radial perturbation using an extension of the Rayleigh criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J Binney and S Tremaine Galactic Dynamics (New Jersey: Princeton University Press) (2008)

    MATH  Google Scholar 

  2. L M Widrow Rev. Mod. Phys. 74, 775 (2002)

    Article  ADS  Google Scholar 

  3. F Govoni and L Feretti Int. J. Mod. Phys. D 13 1549 (2004)

    Article  ADS  Google Scholar 

  4. U Klein and A Fletcher Galactic and Intergalactic Magnetic Fields (New York: Springer) (2015)

    Book  Google Scholar 

  5. R Beck Astrophys. Space Sci. Trans. 5 43 (2009)

    Article  ADS  Google Scholar 

  6. A Neronov and I Vovk Science 328 73 (2010)

    Article  ADS  Google Scholar 

  7. A M Taylor, I Vovk and A Neronov Astron. Astrophys. 529 A144 (2011)

    Article  ADS  Google Scholar 

  8. S A Balbus and J F Hawley Rev. Mod. Phys. 70 1 (1998)

    Article  ADS  Google Scholar 

  9. R D Blandford and D G Payne MNRAS 199 883 (1982)

    Article  ADS  Google Scholar 

  10. K Shibata and Y Uchida PASJ 37 31 (1985)

    ADS  Google Scholar 

  11. S Okuzumi, T Takeuchi and T Muto arXiv:1310.7446

  12. H Lesch, A Crusius, R Schlickeiser and R Wielebinski Astron. Astrophys. 217 99 (1989)

    ADS  Google Scholar 

  13. Y M Toropin, O D Toropina, V V Savelyev, M M Romanova, V M Chechetkin and R V E Lovelace Astrophys. J. 517 906 (1999)

    Article  ADS  Google Scholar 

  14. X D Li and E P J van den Heuvel Astrophys. J. 513 L45 (1999)

    Article  ADS  Google Scholar 

  15. G G Pavlov and V G Bezchastnov Astrophys. J. 635 L61 (2005)

    Article  ADS  Google Scholar 

  16. A I Ibrahim, J H Swank and W Parke Astrophys. J. 584 L17 (2003)

    Article  ADS  Google Scholar 

  17. G G Kuzmin Astron. Zh. 33 27 (1956)

    Google Scholar 

  18. A Toomre Astrophys. J. 138 385 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  19. T Morgan and L Morgan Phys. Rev. 183 1097 (1969)

    Article  ADS  Google Scholar 

  20. C Hunter MNRAS 126 299 (1963)

    Article  ADS  Google Scholar 

  21. D Lynden-Bell MNRAS 123 447 ( 1962)

    Article  ADS  MathSciNet  Google Scholar 

  22. A J Kalnajs Astrophys. J. 175 63 (1972)

    Article  ADS  Google Scholar 

  23. J T Conway MNRAS 316 540 (2000)

    Article  ADS  Google Scholar 

  24. G A González and J I Reina MNRAS 371 1873 (2006)

    Article  ADS  Google Scholar 

  25. J F Pedraza, J Ramos-Caro and G A González MNRAS 390 1587 (2008)

    ADS  Google Scholar 

  26. G A González, S M Plata-Plata and J Ramos-Caro MNRAS 404 468 (2010)

    ADS  Google Scholar 

  27. J Ramos-Caro, C A Agón and J F Pedraza Phys. Rev. D 86 043008 (2012)

    Article  ADS  Google Scholar 

  28. H Andreasson and G Rein MNRAS 446 (4) 3932 (2014)

    Article  ADS  Google Scholar 

  29. J Katz, J Bic̆ák and D Lynden-Bell Class. Quantum Gravity 16 4023 (1999)

    Article  ADS  Google Scholar 

  30. P S Letelier Phys. Rev. D 60 104042 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. G García-Reyes and G A González Phys. Rev. D 69 124002 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. N Gürlebeck, J Bic̆ák and A C Gutiérrez-Piñeres Phys. Rev. D 83 124023 (2011)

    Article  Google Scholar 

  33. C H García-Duque and G García-Reyes Gen. Relativ. Gravit. 43 11 3001 (2011)

    Article  ADS  Google Scholar 

  34. A C Gutiérrez-Piñeres and G A González Int. J. Theor. Phys. 43 (6) 1737 (2012)

    Article  Google Scholar 

  35. A C Gutiérrez-Piñeres, G A González and H Quevedo Phys. Rev. D 87 044010 (2013)

    Article  ADS  Google Scholar 

  36. A C Gutiérrez-Piñeres, G García-Reyes and G A González Int. J. Mod. Phys. D 23 No. 1 1450010 (2014)

    Article  ADS  Google Scholar 

  37. A C Gutiérrez-Piñeres Gen. Relativ. Gravit. 47 54 (2015)

    Article  ADS  Google Scholar 

  38. A Chamorro, R Gregory and J M Stewart Proc. R. Soc. Lond. A413 251 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  39. L Rayleigh Proc. R. Soc. Lond. A 93 148 (1917)

    Article  Google Scholar 

  40. L D Landau and E M Lifshitz Fluid Mechanics (USA: Addison-Wesley) (1989)

    MATH  Google Scholar 

  41. P S Letelier Phys. Rev. D 68 104002 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  42. M Abramowitz and I A Stegun Handbook of Mathematical Functions (New York: Dover Publications) (1970)

    MATH  Google Scholar 

  43. P M Morse and H Fesbach Methods of Theoretical Physics (New York: Mc Graw Hill) (1953)

    Google Scholar 

  44. G Arfken and H Weber Mathematical Methods for Physicists (USA: Academic Press) (2005)

    MATH  Google Scholar 

  45. H Bateman Higher Transcendental Functions (New York: Mc-Graw Hill) Vol 1, p 172 (1954)

    Google Scholar 

  46. T H Troland and R M Crutcher Astrophys. J. 680 457 (2008)

    Article  ADS  Google Scholar 

  47. R M Crutcher, N Hakobian and T H Troland Astrophys. J. 692 844 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. García-Reyes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona-Rueda, E., García-Reyes, G. Analytical models of finite thin disks in a magnetic field. Indian J Phys 90, 495–502 (2016). https://doi.org/10.1007/s12648-015-0786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0786-5

Keywords

PACS Nos.

Navigation