Skip to main content
Log in

An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Applying the Horský-Mitskievitch conjecture to the empty space solutions of Morgan and Morgan due to the gravitational field of a finite disk, we have obtained the corresponding solutions of the Einstein-Maxwell equations. The resulting expressions are simply written in terms of oblate spheroidal coordinates and the solutions represent fields due to magnetized static thin disk of finite extension. Now, although the solutions are not asymptotically flat, the masses of the disks are finite and the energy-momentum tensor agrees with the energy conditions. Furthermore, the magnetic field and the circular velocity show an acceptable physical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bonnor, W.B., Sackfield, A.: Commun. Math. Phys. 8, 338 (1968)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Morgan, T., Morgan, L.: Phys. Rev. 183, 1097 (1969)

    Article  ADS  Google Scholar 

  3. Morgan, L., Morgan, T.: Phys. Rev. D, Part. Fields 2, 2756 (1970)

    Article  ADS  MATH  Google Scholar 

  4. Voorhees, B.H.: Phys. Rev. D, Part. Fields 5, 2413 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  5. Lynden-Bell, D., Pineault, S.: Mon. Not. R. Astron. Soc. 185, 679 (1978)

    ADS  MATH  Google Scholar 

  6. Chamorro, A., Gregory, R., Stewart, J.M.: Proc. - Royal Soc., Math. Phys. Eng. Sci. 413, 251 (1987)

    Article  MathSciNet  Google Scholar 

  7. Letelier, P.S., Oliveira, S.R.: J. Math. Phys. 28, 165 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Lemos, J.P.S.: Class. Quantum Gravity 6, 1219 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Bičák, J., Lynden-Bell, D., Katz, J.: Phys. Rev. D, Part. Fields 47, 4334 (1993)

    Article  ADS  Google Scholar 

  10. Bičák, J., Lynden-Bell, D., Pichon, C.: Mon. Not. R. Astron. Soc. 265, 126 (1993)

    ADS  Google Scholar 

  11. González, G.A., Letelier, P.S.: Class. Quantum Gravity 16, 479 (1999)

    Article  ADS  MATH  Google Scholar 

  12. González, G.A., Espitia, O.A.: Phys. Rev. D, Part. Fields 68(10), 104028 (2003)

    Article  Google Scholar 

  13. González, G.A., Gutiérrez-Piñeres, A.C., Viña-Cervantes, V.M.: Phys. Rev. D, Part. Fields 79(12), 124048 (2009)

    Article  Google Scholar 

  14. Lynden-Bell, D., Pineault, S.: Mon. Not. R. Astron. Soc. 185, 695 (1978)

    ADS  MATH  Google Scholar 

  15. Bičák, J., Ledvinka, T.: Phys. Rev. Lett. 71, 1669 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Pichon, C., Lynden-Bell, D.: Mon. Not. R. Astron. Soc. 280, 1007 (1996)

    ADS  Google Scholar 

  17. González, G.A., Letelier, P.S.: Phys. Rev. D, Part. Fields 62(6), 064025 (2000)

    Article  Google Scholar 

  18. Lemos, J.P.S., Letelier, P.S.: Class. Quantum Gravity 10, L75 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  19. Lemos, J.P.S., Letelier, P.S.: Phys. Rev. D, Part. Fields 49, 5135 (1994)

    Article  ADS  Google Scholar 

  20. Lemos, J.P.S., Letelier, P.S.: Int. J. Mod. Phys. D 5, 53 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  21. Semerák, O., Žáček, M.: Class. Quantum Gravity 17, 1613 (2000)

    Article  ADS  MATH  Google Scholar 

  22. Semerák, O.: Class. Quantum Gravity 19, 3829 (2002)

    Article  ADS  MATH  Google Scholar 

  23. Žáček, M., Semerák, O.: Czechoslov. J. Phys. 52, 19 (2002)

    Article  ADS  Google Scholar 

  24. Semerák, O.: Class. Quantum Gravity 20, 1613 (2003)

    Article  ADS  MATH  Google Scholar 

  25. Semerák, O.: Class. Quantum Gravity 21, 2203 (2004)

    Article  ADS  MATH  Google Scholar 

  26. Karas, V., Huré, J., Semerák, O.: Class. Quantum Gravity 21, 1 (2004)

    Article  ADS  Google Scholar 

  27. Feinstein, A., Ibañez, J., Lazkoz, R.: Astrophys. J. 495, 131 (1998)

    Article  ADS  Google Scholar 

  28. Vogt, D., Letelier, P.S.: Phys. Rev. D, Part. Fields 68(8), 084010 (2003)

    Article  ADS  Google Scholar 

  29. Ujevic, M., Letelier, P.S.: Phys. Rev. D, Part. Fields 70(8), 084015 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  30. Ledvinka, T., Žofka, M., Bičák, J.: In: Piran T., Ruffini, R. (eds.), Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories (1999)

  31. García-Reyes, G., González, G.A.: Braz. J. Phys. 37, 1094 (2007)

    Article  Google Scholar 

  32. Letelier, P.S.: Phys. Rev. D, Part. Fields 60(10), 104042 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  33. Vogt, D., Letelier, P.S.: Class. Quantum Gravity 21, 3369 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Katz, J., Bičák, J., Lynden-Bell, D.: Class. Quantum Gravity 16, 4023 (1999)

    Article  ADS  MATH  Google Scholar 

  35. González, G.A., Gutiérrez-Piñeres, A.C., Ospina, P.A.: Phys. Rev. D, Part. Fields 78(6), 064058 (2008)

    Article  Google Scholar 

  36. García, G.R., González, G.A.: Phys. Rev. D, Part. Fields 69(12), 124002 (2004)

    Article  Google Scholar 

  37. Vogt, D., Letelier, P.S.: Phys. Rev. D, Part. Fields 70(6), 064003 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  38. García-Reyes, G., González, G.A.: Class. Quantum Gravity 21, 4845 (2004)

    Article  ADS  MATH  Google Scholar 

  39. García-Reyes, G., González, G.A.: Phys. Rev. D, Part. Fields 70(10), 104005 (2004)

    Article  ADS  Google Scholar 

  40. Horský, J., Mitskievitch, N.V.: Czechoslovak. J. Phys. 39, 957 (1989)

    Google Scholar 

  41. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact solutions of Einstein’s field equations, 2nd edn. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  42. Papapetrou, A., Hamoui, A.: Ann. Inst. Henri Poincaré, a Phys. Théor. 9, 179 (1968)

    MathSciNet  ADS  Google Scholar 

  43. Lichnerowicz, A.: C.R. Acad. Sci. 273, 528 (1971)

    MathSciNet  MATH  Google Scholar 

  44. Taub, A.H.: J. Math. Phys. 21, 1423 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  45. Israel, W.: Nuovo Cim., B 44, 1 (1966)

    Article  ADS  Google Scholar 

  46. Israel, W.: Nuovo Cim., B 48, 463 (1967)

    Article  ADS  Google Scholar 

  47. Poisson, E.: A Relativist’S Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  48. Richterek, L., Novotný, J., Horský, J.: Czechoslov. J. Phys. 50, 925 (2000)

    Article  ADS  Google Scholar 

  49. Richterek, L., Horský, J.: Czechoslov. J. Phys. 54, 1451 (2004)

    Article  ADS  Google Scholar 

  50. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th ed. Academic Press, San Diego (2001)

    MATH  Google Scholar 

  51. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, International Series in Pure and Applied Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  52. González, G.A., Reina, J.I.: Mon. Not. R. Astron. Soc. 371, 1873 (2006)

    Article  ADS  Google Scholar 

  53. Semerák, O.: Class. Quantum Gravity 18, 3589 (2001)

    Article  ADS  MATH  Google Scholar 

  54. Nakahara, M., Brewer, D.F.: Geometry, Topology and Physics;, 2nd edn. IOP, Bristol (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

A.C. G.-P. wants to acknowledge financial support from COLCIENCIAS, Colombia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo A. González.

Appendix

Appendix

We pass on to the definition of the Hodge (star) operation. Let’s us M a m-dimensional manifold endowed with a metric g. The Hodge (star) operation is a map: Ω r(M)→Ω rm(M) whose action, on the basis of the vector Ω r(M), is defined by [54]

$$\boldsymbol{^{\star}}(\boldsymbol{dx}^{\mu_1}\wedge\boldsymbol{dx}^{\mu_2}\wedge\ldots\wedge \boldsymbol{dx}^{\mu_r})=\frac{\sqrt{|g|}}{(m-r)!}\varepsilon^{{\mu_1}{\mu_2}\ldots{\mu_r}}_{\qquad{\mu_{r+1}}\ldots{\mu_m}}\boldsymbol{dx}^{\mu_{r+1}}\wedge\ldots\wedge \boldsymbol{dx}^{\mu_m}.$$

For a r-form

$$\boldsymbol{A} = \frac{1}{r!}A_{{\mu_1}{\mu_2}\ldots{\mu _r}}\boldsymbol{dx}^{\mu_1}\wedge\boldsymbol{dx}^{\mu_2}\wedge\ldots\wedge \boldsymbol{dx}^{\mu_r}\in\varOmega^r$$

we have

$$\boldsymbol{^{\star} A} = \frac{\sqrt{|g|}}{r!(r-m)!}A_{{\mu_1}{\mu_2}\ldots{\mu_r}}\varepsilon^{{\mu_1}{\mu_2}\ldots{\mu_r}}_{\qquad{\mu_{r+1}}\ldots{\mu_m}}\boldsymbol{dx}^{\mu_{r+1}}\wedge\ldots \wedge\boldsymbol{dx}^{\mu_m}\in\varOmega^{m-r},$$

where the totally anti-symmetric tensor ε is

$$\varepsilon_{\mu_1\mu_2\ldots\mu_m} =\begin{cases}+ 1\quad\mbox{if}\ (\mu_1\mu_2\ldots\mu_m)\\\quad \mbox{is an even permutation of}\ (12\ldots m),\\{-} 1\quad \mbox{if}\ (\mu_1\mu_2\ldots\mu_m)\\\quad \mbox{is an odd permutation of}\ (12\ldots m),\\\quad0\quad \mbox{otherwise},\end{cases}$$

and “∧” is the usual exterior product or wedge product.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Piñeres, A.C., González, G.A. An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks. Int J Theor Phys 51, 1737–1752 (2012). https://doi.org/10.1007/s10773-011-1051-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-1051-0

Keywords

Navigation