Skip to main content
Log in

DC electrical conductivity of Ag2O–TeO2–V2O5 glassy systems

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present article, samples of xAg2O–40TeO2–(60 − x)V2O5 ternary tellurite glasses with 0 ≤ x ≤ 50 (in mol%) have been prepared using the melt-quenching technique. XRD analysis, density measurement by Archimedes’ law, determination of reduced vanadium ions by titration method, and electrical conductivity measurement by using four-probe methods have been done for these glasses. The mixed electronic–ionic conduction of these glasses has been investigated over a wide temperature range of 150–380 K. The experimental results have been analyzed with different theoretical models of hopping conduction. The analysis shows that at high temperatures the conductivity data are consistent with Mott’s model of phonon-assisted polaronic hopping, while Mott’s variable-range hopping model and Greaves’ hopping model are valid at low temperatures. The temperature dependence of the conductivity has been also interpreted in the framework of the percolation model proposed by Triberis and Friedman. The analysis of the conductivity data also indicates that the hopping in these tellurite glasses occurs in the non-adiabatic regime. In each sample, based upon the justified transport mechanism, carrier density and mobility have been determined at different temperatures. The values of oxygen molar volume indicate the effect of Ag2O concentration on the thermal stability or fragility of understudied samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P Y Shih, S W Yung, C Y Chen, H S Liu and T S Chiu Mater. Chem. Phys. 50 63 (1997)

    Article  Google Scholar 

  2. D Souri, M Mohammadi and H Zaliani Electron. Mater. Lett. 10 1103 (2014)

    Article  ADS  Google Scholar 

  3. D Souri and S A Salehizadeh J. Mater. Sci. 44 5800 (2009)

    Article  ADS  Google Scholar 

  4. D Souri and K Shomalian J. Non Cryst. Solids. 355 1597 (2009)

    Article  ADS  Google Scholar 

  5. D Souri J. Phys D Appl. Phys. 41 105102 (2008)

    Article  ADS  Google Scholar 

  6. D Souri and M Elahi Phys. Scr. 75 219 (2007)

    Article  ADS  Google Scholar 

  7. D Souri, M Elahi and M S Yazdanpanah Cent. Eur. J. Phys. 6 306 (2008)

    Google Scholar 

  8. D Souri and Z E Tahan Appl. Phys. B 119 273 (2015)

    Article  ADS  Google Scholar 

  9. D Souri Phys. B 456 185 (2015)

    Article  ADS  Google Scholar 

  10. D Souri Measurement 44 717 (2011)

    Article  Google Scholar 

  11. D Souri, P Azizpour and H Zaliani J. Electron. Mater. 43 3672 (2014)

    Article  ADS  Google Scholar 

  12. A Ghosh J. Appl. Phys. 65 227 (1989)

    Article  ADS  Google Scholar 

  13. S Hazra and A Ghosh J. Mater. Res. 10 2374 (1995)

    Article  ADS  Google Scholar 

  14. A Ghosh and B K Chaudhuri J. Non Cryst. Solids. 103 83 (1988)

    Article  ADS  Google Scholar 

  15. S V G V A Prasad, M S Reddy, N Veeraiah J. Phys. Chem. Solids. 67 2478 (2006)

    Article  ADS  Google Scholar 

  16. A A El-Moneim Mater. Chem. Phys. 73 318 (2002)

    Article  Google Scholar 

  17. R N Sinclair, A C Wright, B Bachra, Y B Dimitriev, V V Dimitriov and M G Arnaudov J. Non Cryst. Solids. 232 38 (1998)

    Article  ADS  Google Scholar 

  18. A Pan and A Ghosh J. Chem. Phys. 112 1503 (2000)

    Article  ADS  Google Scholar 

  19. A Pan and A Ghosh J. Mater. Res. 15 995 (2000)

    Article  ADS  Google Scholar 

  20. S Sakida, S Hayakawa and T Yoko J. Phys. Condens. Matter 12 2579 (2000)

    ADS  Google Scholar 

  21. Y Dimitriev, Y Ivanova, M Dimitrov, E D Lefterova, P V Angelov J. Mater. Sci. Lett. 19 1513 (2000)

    Article  Google Scholar 

  22. M M El-Desoky and M S Al-Assiri Mater. Sci. Eng. B. 137 237 (2007)

    Article  Google Scholar 

  23. P Rozier, A Burian and G J Cuello J. Non Cryst. Solids. 351 632 (2005)

    Article  ADS  Google Scholar 

  24. S Sen and A Ghosh J. Phys. Condens. Matter 11 1529 (1999)

    ADS  Google Scholar 

  25. U Hope, R Kranold, A Ghosh, C Landron, J Neuefeind and P Jovari J. Non Cryst. Solids. 328 146 (2003)

    Article  ADS  Google Scholar 

  26. R El-Mallawany, A Abousehly and E Yousef J. Mater. Sci. Lett. 19 409 (2000)

    Article  Google Scholar 

  27. H M M Moawad, H Jain and R El-Mallawany, J. Phys. Chem. Solids. 70 224 (2009)

    Article  ADS  Google Scholar 

  28. I Z Hager, R El-Mallawany and M Poulain J. Mater. Sci. 34 5163 (1999)

    Article  ADS  Google Scholar 

  29. R El-Mallawany J. Mater. Res. 5 2218 (1990)

    Article  ADS  Google Scholar 

  30. M Pal, K Hirota, Y Tsujigami and H Sakata J. Phys D Appl. Phys. 34 459 (2001)

    Article  ADS  Google Scholar 

  31. N Lebrun, M Levy and J L Souquet Solid State Ionics 40 718 (1990)

    Article  Google Scholar 

  32. R Jose, T Suzuki and Y Ohishi J. Non Cryst. Solids. 352 5564 (2006)

    Article  ADS  Google Scholar 

  33. G S Murugan, T Suzuki and Y Ohishi Appl. Phys. Lett. 86(1) 161109 (2005)

    Article  ADS  Google Scholar 

  34. E P Golis, M Reben, J Wasylak and J Filipecki Opt. Appl. XXXVIII 163 (2008)

    Google Scholar 

  35. G S Murugan and Y Ohishi J. Non Cryst. Solids. 341 86 (2004)

    Article  Google Scholar 

  36. Y Wang, S Dai, F Chen, T Xu and Q Nie Mater. Chem. Phys. 113 407 (2009)

    Article  Google Scholar 

  37. K Aida, T Komatsu and V Dimitrov, Phys. Chem. Solids. 42 103 (2001)

    Google Scholar 

  38. G V Prakash, D N Rao and A K Bhatnagar Solid State Commun. 119 39 (2001)

    Article  ADS  Google Scholar 

  39. N F Mott and E A Davis Electronic Process in Non Crystalline Solids, 2nd edn. (London: Oxford) (1979)

    Google Scholar 

  40. R El-Mallawany J. Mater. Res. 7 224 (1992)

    Article  ADS  Google Scholar 

  41. T Holstein Ann. Phys. 8 343 (1959)

    Article  ADS  Google Scholar 

  42. V K Dhawan and A Mansingh J. Non Cryst. Solids. 51 87 (1982)

    Article  ADS  Google Scholar 

  43. N Lebrun, M Levy and J L Souquet Solid State Ionics 40–41 718 (1990)

    Article  Google Scholar 

  44. K Tanaka, T Yoko, M Nakano, M Nakamura and K Kamiya J. Non Cryst. Solids. 125 264 (1989)

    Article  Google Scholar 

  45. A Ghosh and B K Chaudhuri J. Non Cryst. Solids. 83 151 (1986)

    Article  ADS  Google Scholar 

  46. N F Mott J. Non Cryst. Solids. 1 1 (1968)

    Article  ADS  Google Scholar 

  47. G N Greaves J. Non Cryst. Solids. 11 427 (1973)

    Article  ADS  Google Scholar 

  48. G P Triberis and L R Friedman J. Phys. C 18 2281 (1985)

    Article  ADS  Google Scholar 

  49. G P Triberis J. Non Cryst. Solids. 74 1 (1985)

    Article  ADS  Google Scholar 

  50. N F Mott Philos. Mag. 34 643 (1976)

    Article  ADS  Google Scholar 

  51. H Mori, K Gotoh and H Sakata J. Non Cryst. Solids. 183 122 (1995)

    Article  ADS  Google Scholar 

  52. D Souri J. Non Cryst. Solids. 356 2181 (2010)

    Article  ADS  Google Scholar 

  53. N F Mott Adv. Phys. 16 49 (1967)

    Article  ADS  Google Scholar 

  54. M H Cohen J. Non Cryst. Solids. 4 391 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Souri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Tahan, Z.E. & Salehizadeh, S.A. DC electrical conductivity of Ag2O–TeO2–V2O5 glassy systems. Indian J Phys 90, 407–415 (2016). https://doi.org/10.1007/s12648-015-0768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0768-7

Keywords

PACS No.

Navigation