Skip to main content

Advertisement

Log in

Dielectric relaxation and hydrogen bonding interaction in xylitol–water mixtures using time domain reflectometry

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The measurements of complex dielectric permittivity of xylitol–water mixtures have been carried out in the frequency range of 10 MHz–30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X  ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole–Cole or Cole–Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol–water can be well described by Cole–Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor (g eff) and thermodynamic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Nakanishi and R Nozaki Phys. Rev. E 81 041501 (2010)

    Article  ADS  Google Scholar 

  2. J Goossens and M Gonze Manuf. Confect. 80 71 (2000)

    Google Scholar 

  3. J M deMan Principles of Food Chemistry (Gaithersburg: Aspen Publication) p 181 (1999)

    Book  Google Scholar 

  4. R C Lindsay Food Chemistry (3rd Edition) (New York: Marcel Dekker) (ed.) O R Fennema p 798 (1996)

    Google Scholar 

  5. R L Whistler and J N Bemiller Carbohydrate Chemistry for Food Scientists (2nd Edn.) (St Paul MN: Eagan Press) p 23 (1997)

    Google Scholar 

  6. S D Shirgire, R B Talware, S S Kadam and A C Kumbharkhane J. Mol. Liq. 169 33 (2012)

    Article  Google Scholar 

  7. A Faivre, G Niquet, M Magilone, J Fornazero, J F Jal and L David Eur. Phys. J. B 10 277 (1999)

    Article  ADS  Google Scholar 

  8. S Hensel-Bielowka, M Paluch, J Ziol and C M Roland J. Phys. Chem. B 106 12459 (2002)

    Article  Google Scholar 

  9. M Paluch, C M Roland, S Pawlus, J Ziolo and K L Ngai Phys. Rev. Lett. 91 115701 (2003)

    Article  ADS  Google Scholar 

  10. G Power, G P Johari and J K Vij J. Chem. Phys. 119 435 (2003)

    Article  ADS  Google Scholar 

  11. T Psurek, S Maslanka, M Paluch, R Nozaki and K L Ngai Phys. Rev. E 70 11503 (2004)

    Article  ADS  Google Scholar 

  12. K Elamin, J Sjostorm, H Jansson and J Swenson J. Chem. Phys. 136 104508 (2012)

    Article  ADS  Google Scholar 

  13. S Sudo, N Shinyashiki and S Yagihara J. Mol. Liq. 90 113 (2001)

    Article  Google Scholar 

  14. S Sudo, M Shimomura, N Shinyashiki and S Yagihara J. Non-Cryst. Solids 307 356 (2002)

    Article  ADS  Google Scholar 

  15. S Sudo, M Shimomura, T Sato, T Kasiwagi, N Shinyashiki and S Yagihara J. Non-Cryst. Solids 305 197 (2002)

    Article  ADS  Google Scholar 

  16. R Behrends, K Fuchs, U Kaatze, Y Hayashi and Y Feldman J. Chem. Phys. 124 144512 (2006)

    Article  ADS  Google Scholar 

  17. M Nakanishi and R Nozaki Phys. Rev. E 83 0515031 (2011)

    Article  Google Scholar 

  18. R H Cole, J G Berberian, S Mashimo, G Chryssikos, A Burns and E Tombari J. Appl. Phys. 66 793 (1989)

    Article  ADS  Google Scholar 

  19. A C Kumbharkhane, Y S Joshi, S C Mehrotra, S Yagihara and S Sudo Phys. B 421 1 (2013)

    Article  ADS  Google Scholar 

  20. D W Davidson and R H Cole J. Chem. Phys. 18 1417 (1950)

    Article  ADS  Google Scholar 

  21. R Buchner, J Barthel and J Stauber Chem. Phys. Lett. 306 57 (1999)

    Article  ADS  Google Scholar 

  22. R J Sengwa Indian J. Pure App. Phys. 41 295 (2003)

    Google Scholar 

  23. CRC Handbook of Chemistry and Physics (87th Edn.) (Boca Raton, FL: Taylor and Francis) (ed.) D R Lide (2007)

  24. M Nakanishi and R Nozaki Phys. Rev. E 84 011503 (2011)

    Article  ADS  Google Scholar 

  25. Z Lu, E Manias, D D Macdonald and M Lanagan J. Phys. Chem. A 113 12207 (2009)

    Article  Google Scholar 

  26. J G Kirkwood J. Chem. Phys. 7 911 (1939)

    Article  ADS  Google Scholar 

  27. Y S Joshi, P G Hudge and A C Kumbharkhane Indian J. Phys. 85 1603 (2011)

    Article  ADS  Google Scholar 

  28. N E Hill, W E Vaughan, A H Price and M Davis Dielectric Properties and Molecular Behavior (London: Van Nostrand Reinhold Co.) (1969)

    Google Scholar 

Download references

Acknowledgments

The financial support from the Department of Science and Technology, New Delhi is gratefully acknowledged (Project No. SR/S2/LOP-25/2007). Author YSJ is also thankful to SERB, DST, New Delhi (Project No. SR/FTP/PS-203/2012). We thank to Prof. S.C. Mehrotra, Department of Computer Science, Dr. B.A.M. University, Aurangabad for fruitful discussion. We are thankful to Dr. G. N. Shinde, Principal, Indira Gandhi College, CIDCO, Nanded for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A C Kumbharkhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rander, D.N., Joshi, Y.S., Kanse, K.S. et al. Dielectric relaxation and hydrogen bonding interaction in xylitol–water mixtures using time domain reflectometry. Indian J Phys 90, 67–72 (2016). https://doi.org/10.1007/s12648-015-0728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0728-2

Keywords

PACS No.

Navigation