Skip to main content
Log in

Dielectric relaxation studies of 1,3 and 1,4-butanediol–water mixtures using time domain technique

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Complex dielectric permittivity measurements in the frequency range 10 MHz–30 GHz have been carried out for 1,3 and 1,4 -Butanediol in Water mixtures over the entire concentration range using time domain reflectometry method at 25 °C. The dielectric parameters such as static dielectric constant and relaxation time are obtained from the complex permittivity spectra using nonlinear least square fit method. Molecular interactions among the butanediol–water mixtures have been studied using Kirkwood correlation factor, Excess dielectric constant and Bruggeman factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. U Kaatze J. Mol. Liq. 56 95 (1993)

    Article  Google Scholar 

  2. S D Chavan, A C Kumbharkhane, and S C Mehrotra J. Chin. Chem. Soc. 54 1457 (2007)

    Article  Google Scholar 

  3. P Petong, R Pottel and U Kaatze J. Phys. Chem. A 104 7420 (2000)

    Article  Google Scholar 

  4. T Sato, R Chiba and Nozaki J. Mol. Liq. 101 (1-3) 99 (2002)

    Article  Google Scholar 

  5. R J Sengwa and S Sankhla J. Mol. Liq. 130 119 (2007)

    Article  Google Scholar 

  6. K S Kanse, S D Chavan, C S Mali, A C Kumbharkhane and S C Mehrotra Indian J. Phys. 80(3) 265 (2006)

    Google Scholar 

  7. T Sato and R Buchner J. Mol. Liq. 117 23 (2005)

    Article  Google Scholar 

  8. R J Sengwa, R Choudhary and S C Mehrotra Mol. Phys. 99 (21) 1805 (2001)

    Article  ADS  Google Scholar 

  9. M N Shinde, R B Talware, P G Hudge, Y S Joshi and A C Kumbharkhane Pramana-J. Phys. 78(2) 297 (2011)

    Article  ADS  Google Scholar 

  10. F Wang, R Pottel and U Kaatze J. Phys. Chem. B. 101 922 (1997)

    Article  Google Scholar 

  11. F F Hanna, B Gestblom and A Soliman Phys. Chem. Chem. Phys. 2 5071 (2000)

    Article  Google Scholar 

  12. O V Grineva and V I Zhuravlev J. Chem. Eng. Data 41 (3) 604 (1996)

    Article  Google Scholar 

  13. J George and N V Sastry J. Chem. Eng. Data 48 (6) 1529 (2003)

    Article  Google Scholar 

  14. N Y Tan, R Li, P Brauer, C D’Agostino, L F Gladden and J A Zeitler Phy. Chem. Chem. Phys. 17 5999 (2015)

    Article  Google Scholar 

  15. S Sudo, N Shinyashiki, Y Kitsuki and S Yagihara J. Phys. Chem. A. 106 458 (2002)

    Article  Google Scholar 

  16. A Ghanadzadeh Gilani, H Ghanadzadeh, Kh Bahrpaima and A Ranjkesh J. Chem. Thermodyn. 42 (8) 967 (2010)

    Article  Google Scholar 

  17. S Bozena, M L Karol, K Beate and W Karina Acta Physica Polonica. B. 36 1824 (2005)

  18. J B Hasted Aqueous Dielectric (London: Chapman and Hall) (1973)

  19. R H Cole, J G Berberian, S Mashimo, G Chryssikos, A Burns and E Tombari J. Appl. Phys. 66 793 (1989)

    Article  ADS  Google Scholar 

  20. D Bertolini, M Cassettari, G Salvetti, E Tomabari and S Versoni Rev. Sci. Instrum. 61 450 (1990)

    Google Scholar 

  21. D W Davidson and R H Cole J. Chem. Phys. 18 1417 (1951)

    Article  ADS  Google Scholar 

  22. A C Kumbharkhane, Y S Joshi, S C Mehrotra, S Yagihara and S Sudo Physica B 421 1 (2013)

    Article  Google Scholar 

  23. A C Kumbharkhane, S M Puranik and S C Mehrotra Faraday Trans. 87 1569 (1991)

    Article  Google Scholar 

  24. R J Sengwa, V Khatri and S Sankhala J. Mol. Liq. 144 89 (2009)

    Article  Google Scholar 

  25. J G Kirkwood J. Chem. Phys. 7 911 (1939)

    Article  ADS  Google Scholar 

  26. D A G Bruggeman Ann. Phys. (Leipzig) 5 636 (1935)

    Article  ADS  Google Scholar 

  27. S M Puranik, A C Kumbharkhane and S C Mehrotra J. Mol. Liq. 59 173 (1994)

    Article  Google Scholar 

  28. A C Kumbharkhane, S M Puranik and S C Mehrotra J. Sol. Chem. 22(3) 219 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Department of Science and Technology (DST), New Delhi is thankfully acknowledged (Project No. SR/S2/LOP-25/2007) and SERB, DST, New Delhi (Project No. SR/FTP/PS-203/2012) is gratefully acknowledged. Authors thankful to Swami Ramanand Teerth Marathwada University, Nanded for availing the laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kanse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, S.S., Kanse, K.S., Joshi, Y.S. et al. Dielectric relaxation studies of 1,3 and 1,4-butanediol–water mixtures using time domain technique. Indian J Phys 92, 1367–1372 (2018). https://doi.org/10.1007/s12648-018-1233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-018-1233-1

Keywords

PACS Nos.

Navigation