Skip to main content
Log in

Ternary universal logic gates using quantum dot gate field effect transistors

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we have discussed universal logic gates, NAND and NOR logic using the circuit model of three-state quantum dot gate field effect transistor. Quantum dot gate field effect transistors produce one intermediate state between the normal two stable, on and off states due to a change in the threshold voltage over this range. The authors have developed a simplified circuit model that accounts for this intermediate state. Interesting logic can be implemented using quantum dot gate field effect transistors. In this work, designs of various quantum dot gate field effect transistor based two-input ternary logic operations like NAND and NOR and their application in implementing other ternary logic circuits, have been discussed. Increased number of states in three state quantum dot gate field effect transistor increases the number of bit handling capability of this device and helps us to handle more bits at a time with less circuit elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G E Moore Electronics 38 114 (1965)

    Google Scholar 

  2. G E Moore IEEE Int. Solid-State Circuits Conf. 1 20 (2003)

  3. E J Nowak IBM J. Res. Dev. 46 169 (2002)

    Article  Google Scholar 

  4. R Huang et al. Sci China Ser. F Inf. Sci. 52 9 (2009)

    MATH  Google Scholar 

  5. S Thompson et al. IEDM Tech. Dig. 2002 61 (2002)

  6. K Mistry et al. IEDM Tech. Dig. 2007 247 (2007)

  7. P Bai et al. IEDM Tech. Dig. 2004 657 (2004)

  8. V B Verma, U Reddy, N L Dias, K P Bassett, X Li and J J Coleman IEEE J. Quant. Electron. 12 1827 (2010)

    Article  ADS  Google Scholar 

  9. Z Tan J. Appl. Phys. 105 034312 (2009)

    Article  ADS  Google Scholar 

  10. D Bimberg et al. Thin Solid Films 267 32 (1995)

    Article  ADS  Google Scholar 

  11. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

  12. M Tshipa (2012) Indian J. Phys. 86 807 (2012)

    Article  ADS  Google Scholar 

  13. S Sarangi, P K Panda, S K Sahu and L Maharana Indian J. Phys. 84 431 (2010)

  14. P W Li Appl. Phys. Lett. 85 1532 (2004)

    Article  ADS  Google Scholar 

  15. S Rips and M J Hartmann Phys. Rev. Letts. 110 120503 (2013)

    Article  ADS  Google Scholar 

  16. Z Chen et. al J. Mater. Chem. A, 2 7004 (2014)

    Article  Google Scholar 

  17. L Sun Nature Nanotechnol. 7 369 (2004)

    Article  ADS  Google Scholar 

  18. A E Zhukov and A R Kovsh Quantum Electron. 38 409 (2008)

    Article  ADS  Google Scholar 

  19. F C Jain et al. J. Electron. Mater. 38 1574 (2009)

    Article  ADS  Google Scholar 

  20. S Karmakar, M Gogna and F C Jain Electron. Lett. 48 1556 (2012)

    Article  Google Scholar 

  21. E Suarez et al. J. Electron. Mater. 39 903 (2010)

    Article  ADS  Google Scholar 

  22. J A Chandy and F C Jain Int. Symp. Multiple Valued Logic 38 186 (2008)

  23. S Karmakar, J A Chandy and F C Jain IEEE Trans. Very Large Scale Integr. Syst. 21 793 (2013)

    Article  Google Scholar 

  24. F Papadimitrakopoulos, T Phely-Bobin and P Wisniecki Chem. Mater. 11 522 (1999)

    Article  Google Scholar 

  25. T Phely-Bobin, D Chattopadhyay and F Papadimitrakopoulos Chem. Mater. 14 1030 (2002)

    Article  Google Scholar 

  26. F Jain and F Papadimitrakopoulos US Patent 7, 368–370 (2008)

  27. E Hasaneen, E Heller, R Bansal, and F Jain Solid State Electron. 48 2055 (2004)

    Article  ADS  Google Scholar 

  28. S Karmakar, E Suarez and F Jain J. Electron. Maters. 40 1749 (2011)

    Article  ADS  Google Scholar 

  29. S Karmakar, J A Chandy, M Gogna, and F C Jain J. Electron. Maters 41 2663 (2012)

    Article  ADS  Google Scholar 

  30. S Karmakar, J A Chandy and F C Jain Internat. J. High Speed Electron. Syst. 20 653 (2011)

    Article  Google Scholar 

  31. S Chuang and N Holonyak Appl. Phys. Lett. 80 1270 (2002)

    Article  ADS  Google Scholar 

  32. S C Kleene J. Symbolic Logic 3 150 (1938)

    Article  Google Scholar 

  33. Y B Kim Trans. Elect. Electr. Maters. 12 175 (2011)

Download references

Acknowledgments

Discussions with Dr. John A. Chandy, Dept. of Electrical and Computer Engineering, University of Connecticut, CT and Dr. Evan Heller, Synopsis Inc, Ossining, New York are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Jain, F.C. Ternary universal logic gates using quantum dot gate field effect transistors. Indian J Phys 88, 1275–1283 (2014). https://doi.org/10.1007/s12648-014-0583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0583-6

Keywords

PAC Nos.

Navigation