Skip to main content
Log in

Ternary inverter gate designs using OPV5-based single-molecule field-effect transistors

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Over recent decades, much effort has been invested in the implementation of digital circuits using multivalued and fuzzy logic, as they are more similar to real-world arithmetic and logic. Ternary logic can be implemented in molecular electronics using transistors based on benzene rings because of their special characteristics. A dual-gate molecular field-effect transistor based on the oligo (phenylene vinylene) molecule, which consists of aromatic rings, is proposed herein. Moreover, models for the implementation of all the different types of ternary inverter, viz. a negative ternary inverter, standard ternary inverter, and positive ternary inverter, as well as a binary full adder (FA) cell are proposed. Of note, each of the ternary inverters is implemented using just one transistor, while the FA cell is implemented using two transistors. The transistor, the inverters, and the FA cell are simulated using standard tools to verify their functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dorf, R.C.: The Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  2. Avouris, P.: Carbon nanotube electronics. Chem. Phys. 281(2–3), 429–445 (2002)

    Article  Google Scholar 

  3. Ellenbogen, J.C., Love, J.C.: Architectures for molecular electronic computers. I. Logic structures and an adder designed from molecular electronic diodes. Proc. IEEE 88(3), 386–426 (2000)

    Article  Google Scholar 

  4. Mahmoud, A., Lugli, P.: Atomistic study on dithiolated oligo-phenylenevinylene gated device. J. Appl. Phys. 116, 204504 (2014)

  5. Huber, R., González, M.T., Wu, S., Langer, M., Grunder, S., Horhoiu, V., Mayor, M., Bryce, M.R., Wang, C., Jitchati, R., Schönenberger, C., Calame, M.: Electrical conductance of conjugated oligomers at the single molecule level. J. Am. Chem. Soc. 130(3), 1080–1084 (2007)

    Article  Google Scholar 

  6. Xia, F., Farmer, D.B., Lin, Y.M., Avouris, P.: Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10(2), 715–718 (2010)

    Article  Google Scholar 

  7. Katsouras, L., Zhao, D., Spijkman, M.J., Li, M., Blom, P.W., De Leeuw, D.M., Asadi, K.: Controlling the on/off current ratio of ferroelectric field-effect transistors. Sci. Rep. 5, 12094 (2015)

    Article  Google Scholar 

  8. Feng, Y., Lee, K., Farhat, H., Kong, J.: Current on/off ratio enhancement of field effect transistors with bundled carbon nanotubes. J. Appl. Phys. 106(10), 104505 (2009)

    Article  Google Scholar 

  9. Kumar, B., Kaushik, B.K., Negi, Y.S.: Static and dynamic characteristics of dual gate organic TFT based NAND and NOR circuits. J. Comput. Electron. 13(3), 627–638 (2014)

    Article  Google Scholar 

  10. Zahir, A., Zaidi, S.A.A., Pulimeno, A., Graziano, M., Demachi, D., Masera, G., Piccinini, G.: Molecular transistor circuits: from device model to circuit simulation. In: 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 129–134. IEEE (2014)

  11. Hariharan, R.M., Thiruvadigal, D.J.: Modelling logic gates design using pyrrole based single molecular field effect transistor. Dig. J. Nanomater. Biostruct. 11(3), 873–882 (2016)

    Google Scholar 

  12. Hariharan, R.M., Thiruvadigal, D.J.: Effect of anchoring atom and electrostatic gating on the electronic transport properties in single molecular electronic devices. J. Mater. Sci.: Mater. Electron. 28(1), 601–609 (2017)

    Google Scholar 

  13. Nasri, A., Boubaker, A., Hafsi, B., Khaldi, W., Kalboussi, A.: Tuning negative differential resistance in a single molecule transistor: design of logic gates and effects of various oxygen-and hydrogen-induced defects. Dig. J. Nanomater. Biostruct. 12(1), 99–110 (2017)

    Google Scholar 

  14. Xu, Y., Fang, C., Cui, B., Ji, G., Zhai, Y., Liu, D.: Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors. Appl. Phys. Lett. 99(4), 145 (2011)

    Google Scholar 

  15. Koo, J.B., Ku, C.H., Lim, J.W., Kim, S.H.: Novel organic inverters with dual-gate pentacene thin-film transistor. Org. Electron. 8(5), 552–558 (2007)

    Article  Google Scholar 

  16. Walczak, K.: Simulations of Molecular logic Gates. arXiv:cond-mat/0309666 (2003)

  17. Hariharan, R.M., Kala, C.P., Janani, K., Joseph, H.B., Vivekannathan, S., Thiruvadigal, D.J.: Gated single molecular device and logic gate design. Electron. Lett. 33(1), 46–48 (2017)

    Article  Google Scholar 

  18. Hurst, S.L.: Multiple-valued logic—its status and its future. IEEE Trans. Comput. 33(12), 1160–1179 (1984)

    Article  Google Scholar 

  19. Yoeli, M., Rosenfeld, G.: Logical design of ternary switching circuits. IEEE Trans. Comput. EC-14(1), 19–29 (1965)

    Article  MATH  Google Scholar 

  20. Lin, S., Kim, Y.B., Lombardi, F.: CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10(2), 217–225 (2011)

    Article  Google Scholar 

  21. Lin, S., Kim, Y.B., Lombardi, F.: A novel CNTFET-based ternary logic gate design. In: 2009 52nd IEEE International Midwest Symposium On Circuits and Systems, pp. 435–438. IEEE (2009)

  22. Gang, W., Li, C., Qin, L.: Ternary logic circuit design based on single electron transistors. J. Semicond. 30(2), 025011 (2009)

    Article  Google Scholar 

  23. Das, D., Banerjee, A., Prasad, V.: Design of ternary logic circuits using CNTFET. In: 2018 International Symposium on Devices, Circuits and Systems (ISDCS), pp. 1–6. IEEE (2018)

  24. Tabrizchi, S., Taheri, M., Navi, K., Bagherzadeh, N.: Novel CNFET ternary circuit techniques for high-performance and energy-efficient design. IET Circuits Device Syst. 13(2), 193–202 (2018)

    Article  Google Scholar 

  25. Tabrizchi, S., Sharifi, F., Badawy, A.H.A.: Energy Efficient Tri-State CNFET Ternary Logic Gate. arXiv:1806.07570 (2018)

  26. Tehrani, M.A., Navi, K.: A novel quantum dot cellular automata for implementation of multi-valued logic. In: Nano Today Conference. Elsevier (2009)

  27. Bajec, I.L., Zimic, N., Mraz, M.: The ternary quantum-dot cell and ternary logic. Nanotechnology 17(8), 1937 (2006)

    Article  Google Scholar 

  28. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., Mohammadi, M.: Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput. Electr. Eng. 71, 43–59 (2018)

    Article  Google Scholar 

  29. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  30. Atomistic Toolkit version 13.8.1, QuantumWise A/S (www.quantumwise.com)

  31. Cardamone, D.M., Stafford, C.A., Mazumdar, S.: Controlling quantum transport through a single molecule. Nano Lett. 6(11), 2422–2426 (2006)

    Article  Google Scholar 

  32. Ray, S.J., Chowdhury, R.: Double gated single molecular transistor for charge detection. J. Appl. Phys. 116(3), 034307 (2014)

    Article  Google Scholar 

  33. Tari, H.T., Zarandi, A.D., Reshadinezhad, M.R.: Design of a high performance CNTFET-based full adder cell applicable in: carry ripple, carry select and carry skip adders. Microelectron. Eng. 215, 110980 (2019)

    Article  Google Scholar 

  34. Farahani, M., Moradi, M.: Two low power and high efficient full adder cells based on CNTFET technology. Int. J. Nanoelectron. Mater. 11(3), 321–331 (2018)

    Google Scholar 

  35. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik 158, 243–256 (2018)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tirgar Fakheri, M., Navi, K. & Tehrani, M. Ternary inverter gate designs using OPV5-based single-molecule field-effect transistors. J Comput Electron 19, 1047–1060 (2020). https://doi.org/10.1007/s10825-020-01510-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01510-9

Keywords

Navigation