Skip to main content
Log in

Unsteady flow of nanofluids past a vertical flat plate with leading edge accretion or ablation

  • Review paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Unsteady flow of a nanofluid past a semi-infinite vertical flat plate is theoretically investigated. Unsteadiness is caused by steady rates of accretion or ablation at leading edge. Two types of nanofluids, namely, Cu-water and Ag-water are considered, with Prandtl number Pr = 6.2. Governing partial differential equations are transformed into ordinary differential equations, using a similarity transformation. The resulting ordinary differential equations are solved numerically. Results are compared with those of regular fluid (ϕ = 0) with Pr = 0.7 and comparison shows good agreement with previous results. Effects of nanoparticle volume fraction on flow and heat transfer characteristics, influence of buoyancy force and unsteady parameter, are presented and discussed in detail. It is found that effects of the volume fraction on skin friction and wall temperature gradient are more significantly influential in Ag-water solution than in Cu-water solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J A Eastman, U S Choi, S Li, L J Thompson and S Lee Proceedings of Materials Research Society Symposium p 3(1997)

  2. S U S Choi ASME Fluids Eng. Div. 231 99 (1995)

  3. J Buongiorno J. Heat Transf. Trans. ASME 128 240 (2006)

    Article  Google Scholar 

  4. N R Karthikeyan, J Philip and B Raj Mater. Chem. Phys. 109 50 (2008)

    Article  Google Scholar 

  5. H Blasius Grenzschichten in Flussigkeiten mit kleinerReibung Z. Math. Phys. 56 1 (1908)

  6. B C Sakiadis AIChE J 7 26 (1961)

    Article  Google Scholar 

  7. F K Tsou, E M Sparrow and R J Goldstein Int. J. Heat Mass Transf. 10 219 (1967)

    Article  Google Scholar 

  8. L Todd Fluid Dyn. Res. 19 235 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. T Fang Int. J. Non Linear Mech. 43 1007 (2008)

    Article  ADS  Google Scholar 

  10. T Fang, J Zhang and S Yao Appl. Math. Comput. 217 3747 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. R A VanGorder and K Vajravelu ANZIAM J. 50 541(2009)

    Article  MathSciNet  Google Scholar 

  12. N S Akbar, S Nadeem, R U Haq and Z H Khan Indian J. Phys. 87 1121 (2013)

    Article  ADS  Google Scholar 

  13. R K Tiwari and M K Das Int. J. Heat Mass Transf. 50 2002 (2007)

    Article  MATH  Google Scholar 

  14. H F Oztop and E Abu-Nada Int. J. Heat Fluid Flow 29 1326 (2008)

    Article  Google Scholar 

  15. M Muthamilselvan, P Kandaswamy and J Lee Commun. Non Linear Sci. Numer. Simul. 15 1501 (2010)

    Article  ADS  Google Scholar 

  16. S Ahmad, A M Rohni and I Pop Acta Mech. 218 195 (2011)

    Article  MATH  Google Scholar 

  17. N A Yacob, A Ishak, I Pop and K Vajravelu Nanoscale Res. Lett. 6 314 (2011)

    Article  ADS  Google Scholar 

  18. N Bachok, A Ishak and I Pop Int. J. Heat Mass Transf. 55 642 (2012)

    Article  MATH  Google Scholar 

  19. P Loganathan, P Nirmal Chand and P Ganesan Nano 8 135001 (2013)

    Article  Google Scholar 

  20. P Loganathan and C Vimala Int. J. Heat Tech. 31 95 (2013)

    Google Scholar 

  21. H C Brinkman J. Chem. Phys. 20 571 (1952)

    Article  ADS  Google Scholar 

  22. Y Xuan and Q Li Int. J. Heat Fluid Flow 21 58 (2000)

    Article  Google Scholar 

  23. J C Maxwell A Treatise on Electricity and Magnetism (London : Oxford University Press) (1892)

    Google Scholar 

  24. K Stewartson II Quart J. Mech. Appl. math. 26 143 (1973)

  25. J Alan Adams and D F Rogers Computer-Aided Heat Transfer Analysis (New York: Mc Graw Hill book company) p 285 (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vimala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, P., Vimala, C. Unsteady flow of nanofluids past a vertical flat plate with leading edge accretion or ablation. Indian J Phys 88, 855–859 (2014). https://doi.org/10.1007/s12648-014-0494-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0494-6

Keywords

PACS No.

Navigation