Skip to main content
Log in

Transient natural convective flow of a nanofluid past a vertical plate in the presence of heat generation

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

In this work, an exact analysis on the effects of heat generation and nanoparticle volume concentration on an unsteady free convective flow of a nanofluid past an impulsively started infinite vertical plate is presented. Nanofluids containing nanoparticles of aluminum oxide, copper, titanium oxide, and silver with a nanoparticle volume concentration range smaller than or equal to 0.04 are considered. The governing dimensionless partial differential equations are solved by using the Laplace transform technique. The effects of heat generation and nanoparticle volume concentration on the velocity and temperature profiles are represented graphically. The expressions for the skin friction coefficient and Nusselt number are derived. The effect of heat transfer is found to be more pronounced in a silver–water nanofluid than in the other nanofluids. Comparisons with other published results are found to be in excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. U. S. Choi, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” in Developments and Applications of non-Newtonian Flows (Amer. Soc. Mech. Eng., New York, 1995), Vol. 231, pp. 99–105.

    Google Scholar 

  2. G. G. Stokes, “On the Effects of Internal Friction of Fluids on the Motion of Pendulums,” Cambridge Philos. Trans. 9, 8–106 (1851).

    ADS  Google Scholar 

  3. V. M. Soundalgekar, “Free Convection Effects on the Stokes Problem for an Infinite Vertical Plate,” Trans. ASME, J. Heat Transfer 99 (3), 499–501 (1977).

    Article  Google Scholar 

  4. A. A. Raptis and G. J. Tzivanidis, “Effects of Mass Transfer, Free-Convection Currents and Heat Sources on the Stokes Problem for an Infinite Vertical Plate,” Astrophys. Space Sci. 78 (2), 351–357 (1981).

    Article  ADS  Google Scholar 

  5. H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of C-Al2O3, SiO2 and TiO2 Ultra-Fine Particles,” Netsu Bussei 7 (4), 227–233 (1993).

    Article  Google Scholar 

  6. S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” Trans. ASME, J. Heat Transfer 121 (2), 280–289 (1999).

    Article  Google Scholar 

  7. Y. Xuan and Q. Li, “Heat Transfer Enhancement of Nanofluids,” Int. J. Heat Fluid Flow 21, 58–64 (2000).

    Article  Google Scholar 

  8. Y. Xuan and W. Roetzel, “Conceptions for Heat Transfer Correlation of Nanofluids,” Int. J. Heat Mass Transfer 43 (19), 3701–3707 (2000).

    Article  Google Scholar 

  9. J. A. Eastman, S. U. S. Choi, S. Li, et al., “Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,” Appl. Phys. Lett. 78 (6), 718–720 (2001).

    Article  ADS  Google Scholar 

  10. B. C. Pak and Y. I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles,” Exp. Heat Transfer 11 (2), 151–170 (1998).

    Article  ADS  Google Scholar 

  11. J. Buongiorno, “Convective Transport in Nanofluids,” Trans. ASME, J. Heat Transfer 128 (3), 240–250 (2006).

    Article  Google Scholar 

  12. D. Wen and Y. Ding, “Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids),” IEEE Trans. Nanotechnol. 5 (3), 220–227 (2006).

    Article  ADS  Google Scholar 

  13. L. Gosselin and A. K. Da Silva, “Combined Heat Transfer and Power Dissipation Optimization of Nanofluid Flows,” Appl. Phys. Lett. 85 (18), 4160–4162 (2004).

    Article  ADS  Google Scholar 

  14. S. P. Jang and S. U. S. Choi, “Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett. 84 (21), 4316–4318 (2004).

    Article  ADS  Google Scholar 

  15. A. V. Kuznetsov and D. A. Nield, “Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate,” Int. J. Thermal. Sci. 49 (2), 243–247 (2010).

    Article  MathSciNet  Google Scholar 

  16. A. J. Chamkha and A. M. Aly, “MHD Free Convection Flow of a Nanofluid Past a Vertical Plate in the Presence of Heat Generation or Absorption Effects,” Chem. Eng. Comm. 198, 425–441 (2011).

    Article  Google Scholar 

  17. D. A. Nield and A. V. Kuznetsov, “The Cheng–Minkowycz Problem for Natural Convective Boundary-Layer Flow in a Porous Medium Saturated by a Nanofluid,” Int. J. Heat Mass Transfer 52 (25/26), 5792–5795 (2009).

    Article  MATH  Google Scholar 

  18. W. A. Khan and I. Pop, “Boundary-Layer Flow of a Nanofluid Past a Stretching Sheet,” Int. J. Heat Mass Transfer 53 (11/12), 2477–2483 (2010).

    Article  Google Scholar 

  19. M. A. A. Hamad, I. Pop, and A. I. Md. Ismail, “Magnetic Field Effects on Free Convection Flow of a Nanofluid Past a Vertical Semi-Infinite Flat Plate,” Nonlinear Anal. Real World Appl. 12 (3), 1338–1346 (2010).

    Article  MathSciNet  Google Scholar 

  20. N. Bachok, A. Ishak, and I. Pop, “Unsteady Boundary-Layer Flow and Heat Transfer of a Nanofluid Over a Permeable Stretching/Shrinking Sheet,” Int. J. Heat Mass Transfer 55 (7/8), 2102–2109 (2012).

    Article  Google Scholar 

  21. S. Ahmed and I. Pop, “Mixed Convective Boundary Layer Flow from a Vertical Flat Plate Embedded in a Porous Medium Filled with Nanofluids,” Int. Comm. Heat Mass Transfer 37 (8), 987–991 (2010).

    Article  Google Scholar 

  22. K. C. Lin and A. Violi, “Natural Convection Heat Transfer of Nanofluids in a Vertical Cavity: Effects of Non-Uniform Particle Diameter and Temperature on Thermal Conductivity,” Int. J. Heat Fluid Flow 31 (2), 236–245 (2010).

    Article  Google Scholar 

  23. H. F. Oztop and E. Abu-Nada, “Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids,” Int. J. Heat Fluid Flow 29 (5), 1326–1336 (2008).

    Article  Google Scholar 

  24. R. K. Tiwari and M. K. Das, “Heat Transfer Augment in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids,” Int. J. Heat Mass Transfer 50 (9/10), 2002–2018 (2007).

    Article  MATH  Google Scholar 

  25. H. Schlichting and K. Gersten, Boundary Layer Theory (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  26. R. L. Hamilton and O. K. Crosser, “Thermal Conductivity of Heterogeneous Two-Component Systems,” Indust. Eng. Chem. Fundament. 1 (3), 187–191 (1962).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Loganathan.

Additional information

Original Russian Text © P. Loganathan, P. Nirmal Chand, P. Ganesan.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 56, No. 3, pp. 105–115, May–June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, P., Nirmal Chand, P. & Ganesan, P. Transient natural convective flow of a nanofluid past a vertical plate in the presence of heat generation. J Appl Mech Tech Phy 56, 433–442 (2015). https://doi.org/10.1134/S002189441503013X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002189441503013X

Keywords

Navigation