Skip to main content
Log in

Effects of external magnetic field on thermal entanglement in a spin-one chain with three particles

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper we have investigated the effect of temperature, magnetic field, and exchange coupling on the thermal entanglement in a spin chain with three particles in terms of the measure of entanglement called negativity. The results show that the entanglement decreases with increase in temperature. Also, we have found that under a uniform magnetic field in constant temperature, the entanglement decreases while passing through some maxima. We have found that increasing exchange coupling of any two particles decreases the entanglement of the other two particles. Finally, we have compared our system with a two-particle system and found that in presence of a magnetic field the increase in number of particles leads to the increase in the entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C H Bennett et al Phys. Rev. Lett 70 1895 (1993)

    Article  ADS  Google Scholar 

  2. C H Bennett and S J Wiesner Phys. Rev. Lett 69 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. P W Shor SIAM J. Comput 26 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. L K Grover Phys. Rev. Lett 79 325 (1997)

    Article  ADS  Google Scholar 

  5. A K Ekert Phys. Rev. Lett 67 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. D Deutsch et al Phys. Rev. Lett 77 2818 (1996)

    Article  ADS  Google Scholar 

  7. G Vidal and R F Werner Phys. Rev. A65 032314 (2002)

    ADS  Google Scholar 

  8. M C Arnesen et al Phys. Rev. Lett 87 017901 (2001)

    Article  ADS  Google Scholar 

  9. A Chakrabarti and A Chakraborti Indian. J. Phys 86 791 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jami.

Appendix

Appendix

By using Eq. (5) we find the Hamiltonian matrix as the values of parameters for case \( J_{1} = 0.5,\,\,\,J_{2} = 1 \). Since this matrix is very large we present only the non-zero elements as

$$ H_{1\;2} = H_{1\;4} = H_{1\;10} = H_{2\;1} = H_{2\;3} = H_{2\;5} = H_{2\;11} = H_{3\; 2} = H_{3\; 6} = H_{3 \;11} = H_{3\;12} = H_{4\;1} = H_{4\;5} = H_{4\;7} = H_{4 \;13} = H_{5\; 2} = H_{5 \;4} = H_{5\; 6} = H_{5\; 8} = H_{5 \;14} = H_{6\; 3} = H_{6\; 5} = H_{6\; 9} = H_{6\; 15} = H_{7 \;4} = H_{7 \;8} = H_{7 \;16} = H_{8\; 5} = H_{8 \;7} = H_{8\; 9} = H_{8 \;17} = H_{9 \;6} = H_{9\; 8} = H_{9\; 18} = H_{10 \;1} = H_{10\; 11} = H_{10\; 13} = H_{10\; 19} = H_{11\; 2} = H_{11\; 10} = H_{11\; 12} = H_{11\; 14} = H_{11\; 20} = H_{12 \;3} = H_{12 \;11} = H_{12\; 15} = H_{12\; 21} = H_{13\; 4} = H_{13 \;10} = H_{13 \;14} = H_{13\; 16} = H_{13\; 22} = H_{14\; 5} = H_{14 \;11} = H_{14\; 13} = H_{14\;15} = H_{14\; 17} = H_{14 \;23} = H_{15 \; 6} = H_{15 \; 12} = H_{15 \; 14} = H_{15 \; 18} = H_{15 \;24} = H_{16 \; 7} = H_{16\; 13} = H_{16\; 17} = H_{16\; 25} = H_{17 \; 8} = H_{17\; 14} = H_{17\; 16} = H_{17\; 18} = H_{17\; 26} = H_{18\; 9} = H_{18\; 15} = H_{18\; 17} = H_{18\; 27} = H_{19\; 10} = H_{19\; 20} = H_{19\; 22} = H_{20\; 11} = H_{20\; 19} = H_{20\; 21} = H_{20\; 23} = H_{21\; 12} = H_{21\; 20} = H_{21\; 24} = H_{22\; 13} = H_{22\; 19} = H_{22\; 23} = H_{22\; 25} = H_{23\; 14} = H_{23\; 20} = H_{23\; 22} = H_{23\; 24} = H_{23\; 26} = H_{24 \; 15} = H_{24\; 21} = H_{24\; 23} = H_{24\; 27} = H_{25\; 16} = H_{25\; 22} = H_{25 \; 26} = H_{26\; 17} = H_{26 \; 23} = H_{26\; 25} = H_{26 \; 27} = H_{27\; 18} = H_{27\; 24} = H_{27\; 26} = {\user2 r} $$
$$ H_{2 \;10} = H_{6 \;14} = H_{8 \;16} = H_{9 \;17} = H_{10\; 2} = H_{11\; 3} = H_{11\; 19} = H_{12\; 20} = H_{13\; 5} = H_{14\; 6} = H_{14\; 22} = H_{15\; 23} = H_{16\; 8} = H_{17\; 9} = H_{17\; 25} = H_{18\; 26} = H_{19\; 11} = H_{20\; 12} = H_{22\; 14} = H_{23\; 15} = H_{25\; 17} = H_{26\; 18} = {\mathbf 1} $$
$$ H_{2 \;4 } = H_{3 \;5} = H_{4 \;2} = H_{4 \;10} = H_{5\; 3} = H_{5\; 7} = H_{5\; 11} = H_{6 \;8} = H_{6\; 12} = H_{7\; 5} = H_{7\; 13} = H_{8\; 6} = H_{8 \; 14} = H_{8 \; 16} = H_{9\; 15} = H_{10\; 4} = H_{11\; 5} = H_{11\; 13} = H_{12\; 6} = H_{12\; 14} = H_{13\; 7} = H_{13\; 11} = H_{13\; 19} = H_{14\; 8} = H_{14\; 12} = H_{14\; 16} = H_{14\; 20} = H_{15\; 9} = H_{15\; 17} = H_{15 \; 21} = H_{16 \; 14} = H_{16\; 22} = H_{17\; 15} = H_{17\; 23} = H_{18\; 24} = H_{19\; 13} = H_{20 \; 14} = H_{20\; 22} = H_{21\; 15} = H_{21\; 23} = H_{22 \; 16} = H_{22 \; 20} = H_{23\; 17} = H_{23 \; 21} = H_{23\; 25} = H_{24\; 18} = H_{24\; 26} = H_{25\; 23} = H_{26\;24} = \frac{{\mathbf 1} }{{\mathbf 2} } $$

where \( r = \frac{1}{\sqrt 2 }b \) and b is the magnetic field. Now, we find the eigenvalues and the related eigenvector as follow. The coefficients mi's and hi's are functions of the magnetic field.

Table 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jami, S., Amerian, Z., Ahmadi, F. et al. Effects of external magnetic field on thermal entanglement in a spin-one chain with three particles. Indian J Phys 87, 367–372 (2013). https://doi.org/10.1007/s12648-012-0224-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0224-x

Keywords

PACS Nos.

Navigation