Skip to main content
Log in

Effect of sintering temperature on the microstructural and electrical properties of non stoichiometric strontium bismuth tantalate ferroelectric ceramics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In recent times due to the increased environmental awareness, lead free bismuth layer structured ferroelectrics are being investigated as an alternative to the lead based ferroelectrics due to their high dielectric constant and remnant polarization. Strontium bismuth tantalate is one of the interesting lead free compounds being widely investigated. However, in these compounds it is difficult to maintain the stoichiometry as bismuth gets evaporated due to sintering at high temperature leaving behind the vacancies which affect the properties. In the present work, specimens with different strontium and bismuth content having compositions Sr1−xBi2+xTa2O9 (x = 0.0 and 0.2) were prepared. The preparation conditions have been optimized with an objective to get enhanced electrical properties. The structural characterizations have been done using X-ray diffraction and scanning electron microscopy. Dielectric studies as a function of temperature have been carried out. Dielectric constant is observed to be higher in non-stoichiometric composition and dielectric loss reduces significantly. A maximum 2Pr (~16 μC/cm2) is obtained in composition with the x = 0.2 when sintered at 1,150 °C. The observed behavior has been explained in terms of the microstructural features and inherent lattice defects. The present study reveals an optimum sintering temperature of 1,150 °C for the enhanced structural and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A Govindan, A Sharma, A K Pandey and S K Gaur Indian J. Phys. 85 1829 (2011)

    Article  ADS  Google Scholar 

  2. L N Borah, Sanjay and A Pandey Indian J. Phys. 84 699 (2010)

  3. B N Dash, P Dash, H Rath, P Mallick, R Biswal, P K Kulriya and N C Mishra Indian J. Phys. 84 1315 (2010)

    Article  ADS  Google Scholar 

  4. N C Pop and O F Călţun Indian J. Phys. 86 283 (2012)

  5. T Chen, T Zhang, J F Zhou, J W Zhang, Y H Liu and G C Wang Indian J. Phys. 86 443 (2012)

    Article  Google Scholar 

  6. R R Das, P Bhattacharya and R S Katiyar Appl. Phys. Lett. 81 1672 (2002)

    Google Scholar 

  7. C A Araujo, F D Cuchiaro, L D Mcmillan and J F Scott Nature 374 627 (1995)

    Article  ADS  Google Scholar 

  8. J F Scott, F M Ross, C A Araujo, M C Scott and M Huffman J. Am. Ceram. Soc. 51 1869 (1998)

    Google Scholar 

  9. H Takeda and C Fujioka J. Ceram. Soc. Jpn. 112 S510 (2004)

  10. J J Shyu and C C Lee J. Eur. Ceram. Soc. 23 1167 (2003)

    Article  Google Scholar 

  11. Y Shimakawa, Y Kubo, Y Nakagawa, H Asano and F Izumi Appl. Phys. Lett. 74 1904 (1999)

    Article  ADS  Google Scholar 

  12. C I Cheon, B Y Lee and J S Kim Ferroelectrics 271 81 (2002)

    Article  Google Scholar 

  13. B Li, X Wang, X Han, X Qi and L Li J. Mater. Sci. 39 2621 (2004)

    Article  ADS  Google Scholar 

  14. C H Lu and Y C Chen J. Eur. Ceram. Soc. 19 2909 (1999)

    Article  Google Scholar 

  15. A Dias and R L Moriera J. Phys. Chem. Solids 35 645 (2007)

    Article  ADS  Google Scholar 

  16. C Dong J. Appl. Cryst. 32 838 (1999)

    Google Scholar 

  17. R D Shannon and C T Prewitt Acta Crystallogr. B 25 925 (1969)

    Article  Google Scholar 

  18. J A Cho, S E Park, T K Song, M H Kim and S Kim J. Electroceram. 13 515 (2004)

    Article  Google Scholar 

  19. A Onoders, K Yoshio, H Yamashita and T Takama Jpn. J. Appl. Phys. 38 5683 (1999)

    Article  ADS  Google Scholar 

  20. T Atsuki, N Soyama, T Yonezawa and K Ogi Jpn. J. Appl. Phys. 34 5069 (1995)

    Article  Google Scholar 

  21. S. Mitra, A Mandal, A Banerjee, A Bose and D Chakravorty Jpn. J. Appl. Phys. 38 2275 (1999)

    Article  Google Scholar 

  22. K Singh, D K Bopardikar and D V Atkare Ferroelectrics 82 55 (1998)

    Article  Google Scholar 

  23. E C Subbaro Integr. Ferroelectrics 12 33 (1996)

  24. K Miura and M Tanaka Jpn. J. Appl. Phys. 37 2554 (1998)

  25. I Coondoo, A K Jha and S K Aggarwal Ceram. Int. 33 41 (2007)

    Article  Google Scholar 

  26. Y Naguchi, M Miyayama and T Kudo J. Appl. Phys. 88 2146 (2000)

    Article  ADS  Google Scholar 

  27. B Angadi, P Victor, V M Jali, M T Lagare, R Kumar and S B Krupanidhi Mater. Sci. Eng. B 100 93 (2003)

    Article  Google Scholar 

  28. H T Martirena and J C Burfoot J. Phys. C 7 3162 (1976)

    Google Scholar 

  29. R R Das, P Bhattacharya, W Perez and R S Katiyar Ceram. Int. 30 1175 (2004)

    Article  Google Scholar 

  30. C A Palanduz and D M Smyth J. Eur. Ceram. Soc. 19 731 (1999)

    Article  Google Scholar 

  31. F A Kröger and H K Vink Solid State Phys. 3 307 (1956)

  32. P Ganguly, A K Jha and K L Deori J. Electroceram. 22 257 (2009)

    Article  Google Scholar 

  33. Y Wu, M J Forbess, S Seraji and G Cao J. Appl. Phys. 89 5647 (2001)

    Article  ADS  Google Scholar 

  34. T Friessnegg, S Aggarwal, R Rames, B Nielson, E H Poindexter and D J Keeble Appl. Phys. Lett. 77 127 (2000)

    Article  ADS  Google Scholar 

  35. B H Park et al. Appl. Phys. Lett. 74 1907 (1999)

    Article  ADS  Google Scholar 

  36. I S Zheludev Physics of crystalline Dielectrics Crystallography and spontaneous polarization (New York: Plenum) Vol. 1 (1971)

  37. Y Naguchi and M Miyayama Appl. Phys. Lett. 78 1903 (2001)

    Article  ADS  Google Scholar 

  38. Y Wu, S J Limmer, T P Chou and C Nguyen J. Mater.Sci. Lett. 21 947 (2002)

    Article  Google Scholar 

  39. I Coondoo, A K Jha and S K Aggarwal Ferroelectrics 356 31 (2007)

    Article  Google Scholar 

  40. H Watanabe, T Mihara, H Yoshimori and C A P De Araujo Jpn. J. Appl. Phys. 34 5240 (1995)

    Article  ADS  Google Scholar 

  41. M Yamaguchi, T Nagamoto and O Omoto Thin Solid Films 300 299 (1997)

    Google Scholar 

  42. W Wang, J Zhu, X Y Mao and X B Chen Mater. Res. Bull. 42 274 (2007)

    Article  Google Scholar 

  43. Y Noguchi, I Miwa, Y Goshima and M Miyayama Jpn. J. Appl. Phys. 39 L1259 (2000)

    Article  ADS  Google Scholar 

  44. C H Lu and C H Wu J. Eur. Ceram. Soc. 22 707 (2002)

  45. A Li et al. Thin Solid Films 375 215 (2000)

    Article  ADS  Google Scholar 

  46. S K Sinha, R N P Choudhary and S N Choudhary Indian J. Pure Appl. Phys. 38 783 (2000)

    Google Scholar 

  47. S Devi and A K Jha Indian J. Phys. 86 279 (2012)

  48. A K Jha and R G Mendiratta Indian J. Phys. 68 491 (1994)

  49. X Gao, Z Zhou, J Xue and J Wang J. Am. Ceram. Soc. 88 1037 (2005)

Download references

Acknowledgments

Authors express their thanks to UGC for a major research project (Grant no. F.39-469/2010 (SR)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugandha, Jha, A.K. Effect of sintering temperature on the microstructural and electrical properties of non stoichiometric strontium bismuth tantalate ferroelectric ceramics. Indian J Phys 87, 325–331 (2013). https://doi.org/10.1007/s12648-012-0214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0214-z

Keywords

PACS Nos.

Navigation