Skip to main content
Log in

Fluctuations of particle yield ratios in heavy-ion collisions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Dynamical fluctuations of various particle yield ratios at different center-of-mass energies are studied. Assuming that the particle production in the hadronic final state takes place due to equilibrium chemical processes, the experimental results available so far are compared with the hadron resonance gas (HRG) model taking into account the limited momentum acceptance in heavy-ion collisions experiments against HRG. Degenerated light and conserved strange quarks are presumed at all incident energies. At SPS energies, HRG model provides a good description for the dynamical fluctuations in (K+ + K)/(π+ + π) strangeness particle ratio. The dynamical fluctuations of the non-strangeness (\( {\text{p}} + \bar{p} \))/(π+ + π) ratio are also studied. To reproduce RHIC results, the quark phase space occupation factor γ have to be assigned should be higher values different than unity. These values are conjectured to manifest the hadronic phase transition to quark–gluon plasma. The results are also compared with string-hadronic cascade and hadron string dynamics models. The dependence on center-of-mass energy seems not to be monotonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E V Shuryak Phys. Lett. B 423 9 (1998)

    ADS  Google Scholar 

  2. M Stephanov, K Rajagopal and E Shuryak Phys. Rev. D 60 114028 (1999)

    ADS  Google Scholar 

  3. S Jeon and V Koch Phys. Rev. Lett. 83 5435 (1999)

    ADS  Google Scholar 

  4. G Torrieri, S Jeon and J Rafelski Phys. Rev. C 74 024901 (2006)

    ADS  Google Scholar 

  5. C Roland for the NA49 Collaboration J. Phys. Conf. Ser. 27 174 (2005)

    Google Scholar 

  6. C Roland for the NA49 Collaboration J. Phys. G 30 S1381 (2004)

  7. S Afanasiev for the NA49 Collaboration Phys. Rev. Lett. 86 1965 (2000)

  8. B I Abelev for the STAR Collaboration Phys. Rev. Lett. 103 092301 (2009)

    Google Scholar 

  9. S Das for the STAR Collaboration J. Phys. Conf. Ser. 50 340 (2006)

    Google Scholar 

  10. T J Tarnowsky for the STAR collaboration J. Phys. Conf. Ser. 230 012025 (2010)

    Google Scholar 

  11. M M Aggarwal and Y P Viyogi Indian J. Phys. 84 1629 (2010)

    ADS  Google Scholar 

  12. G Burau, J Bleibel and C Fuchs Indian J. Phys. 84 1777 (2010)

    ADS  Google Scholar 

  13. N N Ajitanand for the PHENIX Collaboration Indian J. Phys. 84 1647 (2010)

  14. F Karsch, K Redlich and A Tawfik Eur. Phys. J. C 29 549 (2003)

    ADS  MATH  Google Scholar 

  15. F Karsch, K Redlich and A Tawfik Phys. Lett. B 571 67 (2003)

    ADS  MATH  Google Scholar 

  16. F Karsch, K Redlich and A Tawfik J. Phys. G 30 S1271 (2004)

    ADS  Google Scholar 

  17. A Tawfik Nucl. Phys. A. 764 387 (2006)

    ADS  Google Scholar 

  18. A Tawfik Europhys. Lett. 75 420 (2006)

    ADS  Google Scholar 

  19. A Ranjan and V Ravishankar Indian J. Phys. 84 11 (2010)

    ADS  Google Scholar 

  20. A Tawfik Indian J. Phys. 85 755 (2011); A Tawfik Indian J. Phys. 86 641 (2012)

    Google Scholar 

  21. V V Begun et al Phys. Rev. C 70 034901 (2004)

    ADS  Google Scholar 

  22. V V Begun et al Phys. Rev. C 76 024902 (2007)

    ADS  Google Scholar 

  23. M Gorenstein, M Hauer, V Konchakovski and E Bratkovskaya Phys. Rev. C 79 024907 (2009)

    ADS  Google Scholar 

  24. M Doring and V Koch Acta Phys. Polon. B 33 1495 (2002)

    ADS  Google Scholar 

  25. A Tawfik Phys. Rev. D 71 054502 (2005)

    ADS  Google Scholar 

  26. A Tawfik J. Phys. G 31 S1105 (2005)

    ADS  Google Scholar 

  27. R Venugopalan and M Prakash Nucl. Phys. A 546 718 (1992)

    ADS  Google Scholar 

  28. J Refelski and J Latessier Acta Phys. Polon. B 30 3559 (1999)

    ADS  Google Scholar 

  29. J Cleymans and K Redlich Phys. Rev. C 60 054908 (1999)

    ADS  Google Scholar 

  30. P Braun-Munzinger and J Stachel Nucl. Phys. A 606 320328 (1996)

    ADS  Google Scholar 

  31. A Tawfik Fizika B 18 141 (2009)

    Google Scholar 

  32. A Tawfik and D Toublan Phys. Lett. B 623 48 (2005)

    ADS  Google Scholar 

  33. M Bleicher et al J. Phys. G 25 1859 (1999)

    ADS  Google Scholar 

  34. M Gyulassy and L McLerran Nucl. Phys. C 750 30 (2005)

    ADS  Google Scholar 

  35. G Torrieri Int. J. Mod. Phys. E 16 1783 (2007)

    ADS  Google Scholar 

  36. G Torrieri Eur. Phys. J. C 49 287 (2007)

    ADS  Google Scholar 

  37. F Karsch and E. Laermann Phys. Rev. C 50 6954 (1994)

    ADS  Google Scholar 

  38. S Ejiri, F Karsch and K Redlich Phys. Lett. B 633 275 (2006)

    ADS  Google Scholar 

  39. M Bleicher et al Phys. Rev. C 62 041901 (2000)

    ADS  Google Scholar 

  40. S Gavin and J Kapusta Phys. Rev. C 65 054910 (2002)

    ADS  Google Scholar 

  41. D Boyanovsky and H de Vega Phys. Rev. D 65 085083 (2002)

    Google Scholar 

  42. M Pietroni Phys. Rev. Lett. 28 2424 (1998)

    ADS  Google Scholar 

  43. Z Fodor and S Katz JHEP 04 050 (2004)

    ADS  Google Scholar 

  44. S Ejiri et al Prog. Theor. Phys. Suppl. 153 118 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tawfik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tawfik, A. Fluctuations of particle yield ratios in heavy-ion collisions. Indian J Phys 86, 1139–1146 (2012). https://doi.org/10.1007/s12648-012-0175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0175-2

Keywords

PACS Nos.

Navigation