Skip to main content
Log in

The effect of confining electric potentials on binding energies in a spheroidal quantum dot

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Calculations of binding energies due to a hydrogenic impurity located at the centre of a spheroidal quantum dot are presented. The effects of the radius of the quantum dot and of spatially variant electric potential confinement have also been investigated. The shifted parabolic potential and the inverse lateral shifted parabolic potential are compared with the well studied parabolic potential. While the parabolic potential and inverse lateral shifted parabolic potential enhance the binding energy, the shifted parabolic potential attenuates it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

    Article  Google Scholar 

  2. S Tekerek, A Kudret and Ü Alver Indian J. Phys. 85 1469 (2011)

    Article  ADS  Google Scholar 

  3. J Bhadra and D Sarkar Indian J. Phys. 84 693 (2010)

    Article  Google Scholar 

  4. E Rotenberg, B K Freelon, H Koh, A Bostwick, K Rossnagel, A Schmid and S D Kevan New J. Physics 7 114 (2005)

    Article  ADS  Google Scholar 

  5. A Martinez-Gil, A Rota, T Maroutian, B Bartenlian, P Beauvillain, E Moyen and M Hanbucken Superlattice Microst. 36 235 (2004)

    Article  ADS  Google Scholar 

  6. S Axelsson, E E B Campbell, L M Jonsson, J Kinaret, S W Lee, Y W Park and M Sveningsson New J. Physics 7 245 (2005)

    Article  ADS  Google Scholar 

  7. A U Ubale and A N Bargal Indian J. Phys. 84 1497 (2010)

    Article  ADS  Google Scholar 

  8. D Kalhor, R Zahiri, S A Ketabi and A Ebrahimzad Indian J. Phys. 84 539 (2010)

    Article  ADS  Google Scholar 

  9. S Mitra, A Mandal, S Banerjee, A Datta, S Bhattacharya, A Bose and D Chakravorty Indian J. Phys. 85 649 (2011)

    Article  ADS  Google Scholar 

  10. H R Fallah, M Ghasemi and A Hassanzadeh Physica E 39 69 (2007)

    Article  ADS  Google Scholar 

  11. C E Rodríguez Torres, A F Cabrera, L A Errico, S Duhalde, M Rentería, F Golmar and F H Sánchez Physica B 398 219 (2007)

    Article  ADS  Google Scholar 

  12. S P Heluani, D Comedi, M Villafuerte and G Juárez Physica B 398 305 (2007)

    Article  ADS  Google Scholar 

  13. C S Wang, J L Zhang, A L Meng, M Zhang and Z J Li Physica E 39 128 (2007)

    Article  ADS  Google Scholar 

  14. X Shen, S Wu, H Zhao and Q Liu Physica E 39 133 (2007)

    Article  ADS  Google Scholar 

  15. Z Zhao, F Liang, P Hu, L Guo, Q Zhong, L He and C Chen Physica E 39 99 (2007)

    Article  ADS  Google Scholar 

  16. S Sarmah and A Kumar Indian J. Phys. 84 1211 (2010)

    Article  ADS  Google Scholar 

  17. Z Cheng, J Xu, Y Zhu, Y Yang, F Li and W Chen J. Alloy Compd. 482 L9 (2009)

    Article  Google Scholar 

  18. X Wei, X Chen and K Jiang Nanoscale Res. Lett. 16 25 (2011)

    ADS  Google Scholar 

  19. B Gates, B Mayers, Z Li and Y Xia Mater. Res. Soc. Symp. 636 D9.15.1 (2001)

  20. A Lorke, R J Luyken, A O Govorov, J P Kotthaus, J M Garcia and P M Petroff Phys. Rev. Lett. 84 2223 (2000)

    Article  ADS  Google Scholar 

  21. J Duan, H Wang and X Huang Chinese J. Chem. Phys. 20 613 (2007)

    Article  ADS  Google Scholar 

  22. S Bhattachyryya, A Pucci and D Zitoun Nanotechnology 19 495711 (2008)

    Article  Google Scholar 

  23. S Fafard, R Leon, D Leonard, J L Merz and P M Petroff Phys. Rev. B 50 8086 (1994)

    Article  ADS  Google Scholar 

  24. S Fafard, R Leon, D Leonard, J L Merz and P M Petroff Phys. Rev. B 52 5752 (1995)

    Article  ADS  Google Scholar 

  25. S Raymond, S Fafard, P J Poole, A Wojs, P Hawrylak, S Charbonneau, D Leonard, R Leon, P M Petroff and J L Merz Phys. Rev. B 54 11548 (1996)

    Article  ADS  Google Scholar 

  26. M Grundmann, O Stier and D Bimberg Phys. Rev. B 52 11969 (1995)

    Article  ADS  Google Scholar 

  27. J-Y Marzin, J M Gérard, A Izraël, D Barrier and G Bastard Phys. Rev. Lett. 73 716 (1994)

    Article  ADS  Google Scholar 

  28. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)

    Article  ADS  Google Scholar 

  29. S Devi and M Srivastva Indian J. Phys. 84 1561 (2010)

    Article  ADS  Google Scholar 

  30. J Bhadra and D Sarkar Indian J. Phys. 84 1321 (2010)

    Article  ADS  Google Scholar 

  31. A Didi Seddik, I Zorkani, A Mdaa and M Maaza Phys. Status Solidi B 243 1765 (2006)

    Google Scholar 

  32. M Adlerstein, P S Pershan and B J Feldman Phys. Rev. B 4 3402 (1971)

    Article  ADS  Google Scholar 

  33. B Monemar, P P Paskov and A Kasic Supperlattices Microst. 38 38 (2005)

    Article  ADS  Google Scholar 

  34. R C Miller, A C Gossard, W T Tsang and O Munteanu Phys. Rev. B 25 3871 (1982)

    Article  ADS  Google Scholar 

  35. G D Watkins, K H Chow, L S Johannesen, L S Vlasenko, C Bozdog, A J Jakrzewski, M Mizuta, H Sunakawa, N Kuroda and A Usui Physica B 340 25 (2003)

    Article  ADS  Google Scholar 

  36. W Xie Physica B 403 2828 (2008)

    Article  ADS  Google Scholar 

  37. A J Peter Physica E 39 115 (2007)

    Article  ADS  Google Scholar 

  38. S Elagoz, S Kutlu, R Amca and I Sokmen Physica B 403 2856 (2008)

    Article  ADS  Google Scholar 

  39. S V Branis, G Li and K K Bajaj Phys. Rev. B 47 1316 (1993)

    Article  ADS  Google Scholar 

  40. M Diarra, C Delerue, Y M Niquet and G Allan J. Appl. Phys. 103 073703 (2008)

    Article  ADS  Google Scholar 

  41. P A Sundqvist, V Narayan, S Stafstrom and M Willander Phys. Rev. B 67 165330 (2003)

    Article  ADS  Google Scholar 

  42. B Koiller, X Hu and S D Sarma Phys. Rev. B 73 045319 (2006)

    Article  ADS  Google Scholar 

  43. A J Guttmann and T Prellberg Phys. Rev. E 47 R2233 (1993)

    Article  ADS  Google Scholar 

  44. F Batola and J Batola Electron. J. Differ. Equ. 2007 1 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moletlanyi Tshipa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tshipa, M. The effect of confining electric potentials on binding energies in a spheroidal quantum dot. Indian J Phys 86, 807–812 (2012). https://doi.org/10.1007/s12648-012-0144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0144-9

Keywords

PACS Nos.

Navigation