Skip to main content
Log in

Exact solutions of nonlinear diffusion-reaction equations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, the \((\frac{G^\prime}{G})\)-expansion method and its generalized version have been employed for obtaining a variety of exact traveling wave solutions of the nonlinear diffusion reaction equation with quadratic and cubic nonlinearities. We have examined the density independent nonlinear diffusion reaction equation with a convective flux term and successfully have obtained some new and more general solutions in terms of Jacobi elliptic functions. The work highlights the significant features of the employed methods and shows the variety in the obtained solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P G Drazin and R S Johnson Solitons: An Introduction (Cambridge: Cambridge Univ. Press) (1989)

    MATH  Google Scholar 

  2. M J Ablowitz and P A Clarkson Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge: Cambridge Univ. Press) (1990)

    Google Scholar 

  3. R Hirota Direct method of finding exact solutions of nonlinear evoluton equations, Lecture Notes in Mathematics No. 515, (Berlin: Springer) p 40 (1976)

  4. H J Satzuma Topics in soliton theory and exact solvable nonlinear equations (eds) M Ablowitz, B Fuchssteiner and M Kruskal (Berlin: Springer) p 1157 (1980)

  5. F Cariello and M Tabor Physica D39 77 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. W Hereman and M Takaoka J. Phys. A23 4805 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. M Wang Phys. Lett. A199 169 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  8. W Malfliet Am. J. Phys. 60 650 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. W Malfliet and W Hereman Phys. Scr. 54 569 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. A M Wazwaz Appl. Math. Comput. 154 713 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. A M Wazwaz Math. Comp. Model. 40 499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. E Fan and H Zhang Phys. Lett. A246 403 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. E Fan Phys. Lett. A277 212 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. T Sutradhar, B K Datta and R K Bera Indian J. Phys. 83 1681 (2009)

    Article  ADS  Google Scholar 

  15. E Fan and Y C Hon Appl. Math. Comput. 141 351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Z Fu and Q Zhao Phys. Lett. A289 69 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Z Yan Phys. Scr. 78 035001 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. C Q Dai and J F Zhang Chaos, Solit.Fract. 27 1042 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. J H He and M A Abdou Chaos Solit. Fract. 34 1421 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. H R Pakzad Indian J. Phys. 84 867 (2010)

    Article  ADS  Google Scholar 

  21. H R Pakzad and K Javidan Indian J. Phys. 83 349 (2009)

    Article  Google Scholar 

  22. C Deniz and M Gerceklioglu Indian J. Phys. 85 339 (2011)

    Article  ADS  Google Scholar 

  23. M Wang, X Li and J Zhang Phys. Lett. A372 417 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. J Zhang, X Wei and Y Lu Phys. Lett. A372 3653 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. S Zhang, L Tong and W Wang Phys. Lett. A372 2254 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. E M E Zayed and K A Gepreel J. Math. Phys. 50 013502 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. D D Ganji and M Abdollahzadeh J. Math Phys. 50 013519 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  28. T Ozis and I Aslan Commun. Theor. Phys. 577 51 (2009)

    Article  MathSciNet  Google Scholar 

  29. E M E Zayed and K A Gepreel Int. J. Nonlin. Sc. 7 501 (2009)

    MathSciNet  Google Scholar 

  30. A Malik, F Chand and S C Mishra Appl. Math. Comp. 216 2596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. E M E Zayed J. Phys. A: Math.Theor. 42 195202 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  32. S Guo and Y Zhou Appl. Math. Comp. 215 3214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. X Fan, S Yang and D Zhao Int. J. Nonlin. Sc. 8 368 (2009)

    MathSciNet  MATH  Google Scholar 

  34. R S Kaushal J. Phys. A: Math. Gen. 38 3897 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. D R King J. Phys. A: Math. Gen. 24 3213 (1991)

    Article  ADS  MATH  Google Scholar 

  36. R S Benarjee Int. J. Theor. Phys. 32 879 (1993)

    Article  Google Scholar 

  37. E Burman and A Ern Comp. Meth. Appl. Mech. Eng. 191 3833 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. R S Kaushal, R Kumar and A Prasad Pramana- J. Phys. 67 249 (2006)

    Article  ADS  Google Scholar 

  39. N Hatano and D R Nelson Phys. Rev. Lett. 77 570 (1996)

    Article  ADS  Google Scholar 

  40. D R Nelson and N M Shnerb Phys. Rev. E58 1383 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  41. M Lakshmanan and S Rajasekar Nonlinear dynamics: Integrability, Chaos and Patterns (Springer, Indian reprint) (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Chand.

Appendices

Appendix 1

The general solutions to jacobi elliptic equation and its derivative (see, for example, [16, 31]) are listed below:

e 0

e 1

e 2

G(ξ)

\(G^{\prime}(\xi)\)

1

−(1 + m 2)

m 2

sn(ξ)

cn(ξ)dn(ξ)

1

−(1 + m 2)

m 2

cd(ξ)

−(1 − m 2)sd(ξ)nd(ξ)

1 − m 2

2m 2 − 1

m 2

cn(ξ)

−sn(ξ)dn(ξ)

m 2 − 1

2 − m 2

−1

dn(ξ)

m 2 sn(ξ)cn(ξ)

m 2

−(m 2 + 1)

1

ns(ξ)

−ds(ξ)cs(ξ)

m 2

−(m 2 + 1)

1

dc(ξ)

(1 − m 2)nc(ξ)sc(ξ)

m 2

2m 2 − 1

1 − m 2

nc(ξ)

sc(ξ) dc(ξ)

−1

2 − m 2

m 2 − 1

nd(ξ)

m 2 sd(ξ)cd(ξ)

1 − m 2

2 − m 2

1

cs(ξ)

−ns(ξ)ds(ξ)

1

2 − m 2

1 − m 2

sc(ξ)

nc(ξ)dc(ξ)

1

2m 2 − 1

m 2(m 2 − 1)

sd(ξ)

nd(ξ)cd(ξ)

m 2(m 2 − 1)

2m 2 − 1

1

ds(ξ)

−cs(ξ)ns(ξ)

\(\frac{1}{4}\)

\(\frac{1}{2}(1-2m^2)\)

\(\frac{1}{4}\)

ns(ξ) ± cs(ξ)

−ds(ξ) cs(ξ) ∓ ns(ξ)ds(ξ)

\(\frac{1}{4}(1-m^2)\)

\(\frac{1}{2}(1+m^2)\)

\(\frac{1}{4}(1-m^2)\)

nc(ξ) ± sc(ξ)

sc(ξ) dc(ξ) ± nc(ξ)dc(ξ)

\(\frac{m^2}{4}\)

\(\frac{1}{2}(m^2-2)\)

\(\frac{1}{4}\)

ns(ξ) ± ds(ξ)

−ds(ξ) cs(ξ) ∓ cs(ξ)ns(ξ)

\(\frac{m^2}{4}\)

\(\frac{1}{2}(m^2-2)\)

\(\frac{m^2}{4}\)

\({\text{sn}}(\xi)\pm \upiota {\text{cn}}(\xi)\)

\({\text{dn}}(\xi) {\text{cn}}(\xi)\mp\upiota {\text{sn}}(\xi){\text{dn}}(\xi)\)

0

1

−1

sech(ξ)

−sech(ξ)tanh(ξ)

0

1

1

csch(ξ)

−csch(ξ)coth(ξ)

0

−1

1

sec(ξ)

sec(ξ)tan(ξ)

0

0

1

\(\frac{1}{\xi}\)

\(-\frac{1}{\xi^2}\)

0

−(1 + m 2)

m 2

sn(ξ)

cn(ξ)dn(ξ)

where 0 < m < 1 is the modulus of Jacobi elliptic functions and \(\upiota=\sqrt{-1}\).

Appendix 2

The Jacobi elliptic functions sn(ξ), cn(ξ), dn(ξ), ns(ξ), cs(ξ), ds(ξ), sc(ξ), sd(ξ) degenerate into hyperbolic functions when m → 1 as follows,

$$ {\text{sn}}(\xi)\rightarrow {\text{tanh}}(\xi),\;{\text{cn}}(\xi)\rightarrow {\text{sech}}(\xi),\;{\text{dn}}(\xi)\rightarrow {\text{sech}}(\xi),\;{\text{ns}}(\xi)\rightarrow {\text{coth}}(\xi),\;{\text{cs}}(\xi)\rightarrow {\text{cosech}}(\xi),\;{\text{ds}}(\xi)\rightarrow {\text{cosech}}(\xi),\;{\text{sc}}(\xi)\rightarrow {\text{sinh}}(\xi),\;{\text{sd}}(\xi)\rightarrow {\text{sinh}}(\xi), $$

and into trigonometric functions when m → 0 as follows,

$$ {\text{sn}}(\xi)\rightarrow {\text{sin}}(\xi),\;{\text{cn}}(\xi)\rightarrow {\text{cos}}(\xi),\;{\text{dn}}(\xi)\rightarrow 1,\;{\text{ns}}(\xi)\rightarrow {\text{cosec}}(\xi),\;{\text{cs}}(\xi)\rightarrow {\text{cot}}(\xi),\;{\text{ds}}(\xi)\rightarrow {\text{cosec}}(\xi),\;{\text{sc}}(\xi)\rightarrow {\text{tan}}(\xi),\;{\text{sd}}(\xi)\rightarrow {\text{sin}}(\xi).$$

Appendix 3

$$ {\text{cd}}(\xi)=\frac{cn(\xi)}{{\text{dn}}(\xi)},\;{\text{dc}}(\xi)=\frac{{\text{dn}}(\xi)}{{\text{cn}}(\xi)},\;{\text{nc}}(\xi)=\frac{1}{{\text{cn}}(\xi)},\;{\text{nd}}(\xi)=\frac{1}{{\text{dn}}(\xi)},\;{\text{cs}}(\xi)=\frac{{\text{cn}}(\xi)}{{\text{sn}}(\xi)},\;{\text{sc}}(\xi)=\frac{{\text{sn}}(\xi)}{{\text{cn}}(\xi)},\;{\text{sd}}(\xi)=\frac{{\text{sn}}(\xi)}{{\text{dn}}(\xi)},\;{\text{ds}}(\xi)=\frac{{\text{dn}}(\xi)}{{\text{sn}}(\xi)}.$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, A., Chand, F., Kumar, H. et al. Exact solutions of nonlinear diffusion-reaction equations. Indian J Phys 86, 129–136 (2012). https://doi.org/10.1007/s12648-012-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-012-0023-4

Keywords

PACS Nos.

Navigation