Skip to main content
Log in

Dielectric relaxation study of aqueous 2-ethoxyethanol using time domain reflectometry technique

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The complex permittivity spectra of 2-ethoxyethanol in water solutions have been studied at different concentrations and temperatures using a picosecond time domain reflectometry technique. The complex dielectric permittivity spectrum of 2-ethoxyethanol shows Cole-Davidson type behavior. Increase in dielectric relaxation time may be due to increase in hetero molecular interaction strength. Minimum in Excess dielectric constant values provides the information about stable complex adduct. The Kirkwood correlation factor, thermodynamic properties and Bruggeman factor have also been determined and the results are interpreted in terms of hydrogen bonding and interactions among the solute — solvent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C M Kinart, M Maj, A Cwiklinska and W J Kinart J. Mol. Liq. 139 1 (2008)

    Article  Google Scholar 

  2. H D Purohit and R J Sengwa J. Mol. Liq. 47 53 (1990)

    Article  Google Scholar 

  3. L S Prabhumirashi and C I Jose J. Chem. Soc. Faraday Trans. 2 71 1545 (1975)

    Article  Google Scholar 

  4. R J Sengwa and K Kaur J. Mol. Liq. 82 231 (1999)

    Article  Google Scholar 

  5. R J Sengwa, Madhavi, S Sankhla and S Sharma Bull. Korean Chem. Soc. 27 718 (2006)

    Article  Google Scholar 

  6. R J Sengwa, V Khatri and S Sankhla J. Mol. Liq. 144 89 (2009)

    Article  Google Scholar 

  7. P W Khirade, A Chaudhari, J B Shinde, S N Helambe and S C Mehrotra J. Sol. Chem. 28 1031 (1999)

    Article  Google Scholar 

  8. P W Khirade, A Chaudhari, J B Shinde, S N Helambe and S C Mehrotra J. Chem. Eng. Data 44 879 (1999)

    Article  Google Scholar 

  9. R J Sengwa, Madhavi and Abhilasha J. Mol. Liq. 123 92 (2006)

    Article  Google Scholar 

  10. S S Dhondge, C P Pandhurnekar and D V Parwate J. Chem. Thermodyn. 41 577 (2009)

    Article  Google Scholar 

  11. C M Kinart and M Klimczak J. Mol. Liq. 148 (2009)

  12. C Gabriel, S Gabriel, E H Grant, B S J Halstead and D M P Mingos Chem. Soc. Rev. 27 213 (1998)

    Article  Google Scholar 

  13. A A El-Harakany, A M Hafez and A S El-Laboudy J. Chin. Chem. Soc. 34 71 (1987)

    Google Scholar 

  14. A L Tidar and P W Khirade Intl. J. Pharma and Biosciences V1 1 (2010)

    Google Scholar 

  15. U Kaatze Radiat. Phys. Chem. 45 549 (1995)

    Article  ADS  Google Scholar 

  16. S D Chavan, B D Watode, P G Hudge, D B Surywanshi, C G Akode, A C Kumbharkhane and S C Mehrotra Indian J. Phys. 84 419 (2010)

    Article  Google Scholar 

  17. S K Dash, J K Das, B Dalai and B B Swain Indian J. Phys. 83 1557 (2009)

    Article  ADS  Google Scholar 

  18. T V Krishna, S S Sastry and V K Ra Murthy Indian J. Phys. 85, 379 (2011)

    Article  ADS  Google Scholar 

  19. S Sahoo and S K Sit Indian J. Phys. 84 1549 (2010)

    Article  ADS  Google Scholar 

  20. R B Talware, D B Surywanshi, A C Kumbharkhane and S C Mehrotra Indian J. Phys. 85 301 (2011)

    Article  ADS  Google Scholar 

  21. U Kaatze, M Kettler and R Pottel J. Phys. Chem. 100 2360 (1996)

    Article  Google Scholar 

  22. U Kaatze, K Menzel, R Pottel and S Schwerdtfeger Z. Phys. Chem. 186 141 (1994)

    Article  Google Scholar 

  23. N E Hill, W E Vaughan, A H Price and M Davies Dielectric Properties and Molecular Behavior (London: Van Nostrand Reinhold, Co.) (1969)

    Google Scholar 

  24. J B Hasted Aqueous Dielectric (London: Chapman and Hall) (1973).

    Google Scholar 

  25. R H Cole, J G Berberian, S Mashimo, G Chryssikos, A Burns and E Tombari J. Appl. Phys. 66 793 (1989)

    Article  ADS  Google Scholar 

  26. D Bertolini, M Cassettari, G Salvetti, E Tomabari and S Versoni Rev. Sci. Instrum. 61 450 (1990)

    Article  Google Scholar 

  27. A C Kumbharkhane, S M Puranik and S C Mehrotra J. Chem Soc. Faraday Trans. 87 1569 (1991)

    Article  Google Scholar 

  28. S Havriliak and S Negami J. Polym. Sci. C 14 99 (1966)

    Google Scholar 

  29. R Cecilie and R K Soren J. Mol. Liq. 101 199 (2002)

    Article  Google Scholar 

  30. J G Kirkwood J.Chem. Phys. 7 911 (1939)

    Article  ADS  Google Scholar 

  31. D Lide (ed.) CRC Handbook of Chemistry and Physics (Boca Raton, FL: Taylor and Francis) (2007)

    Google Scholar 

  32. A C Kumbharkhane, S M Puranik, C G Akode and S C Mehrotra Indian J. Phys. 74A 471 (2000)

    Google Scholar 

  33. A C Kumbharkhane, S M Puranik and S C Mehrotra J. Sol. Chem. 21 201 (1992)

    Article  Google Scholar 

  34. A C Kumbharkhane, S N Helambe, S Doraiswamy and S C Mehrotra J. Chem. Phys. 99 2405 (1993)

    Article  ADS  Google Scholar 

  35. R J Sengwa, V Khatri and S Sankhala J. Mol. Liq. 144 89 (2009)

    Article  Google Scholar 

  36. S Glasstone, K J Laider and H Eyring The Theory of Rate Processes (New York: McGraw Hill) (1941)

    Google Scholar 

  37. D A G Bruggeman Ann. Phys.(Leipzig) 5 636 (1935)

    Article  Google Scholar 

  38. S M Puranik, A C Kumbharkhane and S C Mehrotra J. Mol. Liq. 59 173 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Kumbharkhane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, Y.S., Hudge, P.G. & Kumbharkhane, A.C. Dielectric relaxation study of aqueous 2-ethoxyethanol using time domain reflectometry technique. Indian J Phys 85, 1603–1614 (2011). https://doi.org/10.1007/s12648-011-0176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0176-6

Keywords

Navigation