Skip to main content
Log in

Quantum dynamics of molecules in 4He nano-droplets: Microscopic superfluidity

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 2011

Abstract

High resolution spectroscopy of doped molecules in 4He nano-droplets and clusters gives a signature of superfluidity in microscopic system, termed as microscopic superfluidity. Ro-vibrational spectrum of 4HeN-M clusters is studied with the help of some important observations, revealed from experiments (viz., localised and orderly arrangement of 4He atoms, although, being free to move in the order of their locations; individual 4He atoms can not be tagged as normal/ superfluid, etc.) and other factors (e.g., consideration that the 4He atoms which happen to fall in the plane of rotation of a molecule, render a equipotential ring and thus, do not take part in rotation; etc.) which effect the rotational and vibrational spectrum of the system. This helps us in successfully explaining the experimental findings which state that the rotational spectrum of clusters have sharp peaks (indicating that the molecule rotates like a free rotor) and moment of inertia and vibrational frequency shift have a non-trivial dependence on N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J F Annett Superconductivity, Superfluidity and Condensates (New York: Oxford University Press) 1 (2004)

    Google Scholar 

  2. A R W Mckellar J. Chem. Phys. 127 044315 (2007)

    Article  ADS  Google Scholar 

  3. X G Song, Y Xu, P N Roy and W Jager J. Chem. Phys. 121 12308 (2004)

    Article  ADS  Google Scholar 

  4. M Hartmann, R E Miller, J P Toennies and A F Vilesov Phys. Rev. Lett. 75 1566 (1995)

    Article  ADS  Google Scholar 

  5. S Grebenev, J P Toennies and A F Vilesov Science 279 2083 (1998)

    Article  ADS  Google Scholar 

  6. S Miura J. Chem. Phys. 126 114309 (2007) and references therein

    Article  ADS  Google Scholar 

  7. C Callegari, K K Lehmann, R Schmied and G Scoles J. Chem. Phys. 115 10090 (2001)

    Article  ADS  Google Scholar 

  8. J P Toennies and A F Vilesov Anuu. Rev. Phys. Chem. 49 1 (1998)

    Article  ADS  Google Scholar 

  9. W Topic, W Jager, N Blinov, P N Roy, M Botti and S Moroni J. Chem. Phys. 125 144310 (2006)

    Article  ADS  Google Scholar 

  10. C Callegari, A Conjusteau, I Reinhard, G Scoles and F Dalfovo Phys. Rev. Lett. 83 5058 (1999)

    Article  ADS  Google Scholar 

  11. A Conjusteau, C Callegari, I Reinhard, K K Lehmann and G Scoles J. Chem. Phys. 113 4840 (2000)

    Article  ADS  Google Scholar 

  12. K Nauta and R E Miller Phys. Rev. Lett. 82 4480 (1999)

    Article  ADS  Google Scholar 

  13. K Nauta and R E Miller J. Chem. Phys. 113 9466 (2000)

    Article  ADS  Google Scholar 

  14. A R W Mckeller, Y Xu and W Jager Phys. Rev. Lett. 97 183401 (2006) and references therein

    Article  ADS  Google Scholar 

  15. J Tang and A R W Mckeller J. Chem. Phys. 117 2586 (2002)

    Article  ADS  Google Scholar 

  16. Y Xu, W Jagar, J Tang and A R W Mckellar Phys. Rev. Lett. 91 163401 (2006)

    Article  ADS  Google Scholar 

  17. X G Wang, T Carrington Jr., J Tang and A R W Mckellar J. Chem. Phys. 123 034301 (2005)

    Article  ADS  Google Scholar 

  18. Y Xu, N Bilinov, W Jager and P N Roy J. Chem. Phys., 124 081101 (2006)

    Article  ADS  Google Scholar 

  19. S Moroni, N Blinov and P N Roy J. Chem. Phys. 121 3577 (2004)

    Article  ADS  Google Scholar 

  20. F Paesani and K B Whaley J. Chem. Phys. 121 5293 (2004)

    Article  ADS  Google Scholar 

  21. F Paesani, A Viel, F A Gianturco and K B Whaley Phys. Rev. Lett. 90 073401 (2003)

    Article  ADS  Google Scholar 

  22. S Moroni, A Sarsa, S Fantoni, K E Schmidth and S Baroni Phys. Rev. Lett. 90 143401 (2003)

    Article  ADS  Google Scholar 

  23. S Paolini, S Fantoni, S Moroni and S Baroni J. Chem. Phys. 123 114306 (2005)

    Article  ADS  Google Scholar 

  24. F Paesani and K B Whaley J. Chem. Phys. 121 4180 (2004)

    Article  ADS  Google Scholar 

  25. N Blinov, X Song and P N Roy J. Chem. Phys. 120 5916 (2004)

    Article  ADS  Google Scholar 

  26. R E Zillich, F Paesani, Y Kwon and K B Whaley J. Chem. Phys. 123 14301 (2005)

    Article  Google Scholar 

  27. C Callegari Ph.D Thesis (USA: Princeton University) (2000)

  28. S. Paolini Ph.D Thesis (Scuola Internazionale Superiore di Studi Avanzati, Italy) (2007)

  29. J Tang, Y J Xu, A R W McKellar and W Jagger Science 297 2030 (2002)

    Article  ADS  Google Scholar 

  30. Y Xu and W Jager J. Chem. Phys. 119 5457 (2003)

    Article  ADS  Google Scholar 

  31. A R W McKellar J. Chem. Phys. 128 044308 (2008)

    Article  ADS  Google Scholar 

  32. L A Surin, A V Potapov, B S Dumesh, S Schlemmer, Y Xu, P L Raston and W Jager Phys. Rev. Lett. 101 233401 (2008)

    Article  ADS  Google Scholar 

  33. H Bauer, M Hausmann, R Mayer, H J Reyher, E Weber and A Winnacker Phys. Lett. A 110 279 (1985)

    ADS  Google Scholar 

  34. M Himbert, A Lezama and J Dupnot-Roc J. Phys. 46 2009 (1985)

    Article  Google Scholar 

  35. S Goyal, D L Schutt and G Scoles Phys. Rev. Lett. 69 933 (1992)

    Article  ADS  Google Scholar 

  36. Y Kwon and K B Whaley Phys. Rev. Lett. 83 4108 (1999)

    Article  ADS  Google Scholar 

  37. Y Kwon, P Huang, M V Patel, D Blume and K B Whaley J. Chem. Phys. 113 6469 (2000)

    Article  ADS  Google Scholar 

  38. V R Pandharipande, J G Zabolitzky, S C Pieper, R B Wiringa and W Helmbrecht Phys. Rev. Lett. 50 1676 (1983)

    Article  ADS  Google Scholar 

  39. R N Barnett and K B Whaley J. Chem. Phys. 96 2953 (1992)

    Article  ADS  Google Scholar 

  40. S Miura J. Phys. 17 S3259 (2005)

    Google Scholar 

  41. W Topic and W Jager J. Chem. Phys. 123 064303 (2005)

    Article  ADS  Google Scholar 

  42. O Akin-Ojo, R Bukowski and K Szalewicz J. Chem. Phys. 119 8379 (2003)

    Article  ADS  Google Scholar 

  43. J Wilks The Properties of Liquid and Solid Helium (Oxford: Clerendon Press) (1967)

    Google Scholar 

  44. Y S Jain, B Singh and B N Khanna Pramana 18 511 (1982)

    Article  ADS  Google Scholar 

  45. S Dey and Y S Jain Fortran Program for the Calculation of Required Bond Length for a Given Arrangement and Rotational Constant (unpublished) (2008)

  46. S Dey and Y S Jain Fortran Program for the Calculation of Required Orientation of Bonds for a Given Bond-length and Rotational Constant (unpublished)(2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dey.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12648-011-0172-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, S., Gewali, J.P., Jha, A.K. et al. Quantum dynamics of molecules in 4He nano-droplets: Microscopic superfluidity. Indian J Phys 85, 1309–1330 (2011). https://doi.org/10.1007/s12648-011-0156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0156-x

Keywords

Navigation