Skip to main content
Log in

Structural stability and electronic properties of Au5H n (n=1–10) clusters

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A systematic study on the geometrical structures, electronic and magnetic properties of Au5H n (n=1–10) clusters has been performed by using the all-electron scalar relativistic density functional theory with generalized gradient approximation at the PW91 level. It is found that all Au5H n clusters prefer to keep the planar structures like pure Au5 cluster, the Au5 structures in Au5H4, Au5H5 and Au5H6 clusters are distorted obviously. The adsorption of a number of hydrogen atoms enhances the stability of Au5 cluster and all Au5H n clusters are more stable than pure Au5 cluster energetically. The odd-even alteration of magnetic moment is observed in Au5H n clusters and may be served as the material with tunable code capacity of “0” and “1” by adsorbing odd or even number of H atoms. It seems that the most favorable adsorption between Au5 cluster and a number of hydrogen atoms takes place in the case that the odd number of hydrogen atoms is adsorbed onto Au5 cluster and becomes Au5H n cluster with even number of valence electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Okumura, S Nakamura, S Tsubota, T Nakamura, M Azuma and M Haruta Catal. Lett. 51 53 (1998)

    Article  Google Scholar 

  2. G C Bond and D Thompson Catal. Rev. Sci. Eng. 41 319 (1999)

    Article  Google Scholar 

  3. D W Goodman et al., Science 281 1647 (1998)

    Article  ADS  Google Scholar 

  4. M Harut Chem. Rec. 3 75 (2003)

    Article  Google Scholar 

  5. M C Daniel and D Astruct Chem. Rev. 104 293 (2004)

    Article  Google Scholar 

  6. F Boccuzzi and A J Chiorino Phys. Chem. B 104 5414 (2000)

    Google Scholar 

  7. H Hakkinen and U Landman J. Am. Chem. Soc. 123 9704 (2001)

    Article  Google Scholar 

  8. W T Wallace and R W Whetten J. Am. Chem. Soc. 124 7499 (2002)

    Article  Google Scholar 

  9. N Lopez and J K Norskov J. Am. Chem. Soc. 124 11262 (2002)

    Article  Google Scholar 

  10. L M Molina and B Hammer Phys. Rev. Lett. 90 206102 (2003)

    Article  ADS  Google Scholar 

  11. M L Kimble, A W Castleman, R Mitric Jr, C Burgel, V Bonacic and Koutecky J. Am. Chem. Soc. 126 2526 (2004)

    Article  Google Scholar 

  12. A Ueda and M Haruta Gold Bull. 32 3 (1999)

    Article  Google Scholar 

  13. L Panas, L shule, P Siegbahn and U Wahlgren Chem. Phys. Lett. 149 256 (1988)

    Article  ADS  Google Scholar 

  14. H Yang and J L Whitten Suf. Sci. Rep. 24 55 (1996)

    Article  Google Scholar 

  15. B Hammer and J K. Norskov Nature 376 278 (1995)

    Article  ADS  Google Scholar 

  16. M Okumura, Y Kitagawa, M Haruta and K Yamaguchi Appl. Cata A291 37 (2005)

    Article  Google Scholar 

  17. H Stromsnes, S Jusuf, B Schimmelpfennig and U Wahlgren J. Molec. Struc. 567 137 (2001)

    Article  ADS  Google Scholar 

  18. S Phala, G Klatt, and E V Steen Chem. Phys. Lett. 395 33 (2004)

    Article  ADS  Google Scholar 

  19. X Ding, J L Yang, J G Hou and Q S Zhu J. Molec. Struc (THEOCHEM) 755 9 (2005)

    Article  Google Scholar 

  20. E M Fernandez, J M Soler, L L Garzon and C Balbas Phys. Rev. B70 165403 (2004)

    ADS  Google Scholar 

  21. H Orita, N Itoh and Y Inada Chem. Phys. Lett. 384 271 (2004)

    Article  ADS  Google Scholar 

  22. Y S Lee and A D McLean J. Chem. Phys. 76 735 (1982)

    Article  ADS  Google Scholar 

  23. S N Datta and C S Ewig Chem. Phys. Letts. 85 443 (1982)

    Article  ADS  Google Scholar 

  24. H Hakkinen and U Landman Phys. Rev. B62 2287 (2000)

    ADS  Google Scholar 

  25. H Myoung, M Ge, B R Sahu, P Tarakeswar and K S Kim J. Chem. Phys. 107 9994 (2003)

    Article  Google Scholar 

  26. E M Fernandez, J M Soler, L L Garzon and C Balbas Phys. Rev. B70 165403 (2004)

    ADS  Google Scholar 

  27. H P Mao, H Y Wang, Y Ni and G L Xu Acta Physica. Sinica. 53 1766 (2004)

    Google Scholar 

  28. A Deka and R C Deka J. Molec. Struc. (Theochem) 870 83 (2008)

    Article  Google Scholar 

  29. G H Wang Progress in Physics 20 251 (2000)

    Google Scholar 

  30. S Darby, V Thomas and M Jones J. Chem. Phys. 116 1536 (2002)

    Article  ADS  Google Scholar 

  31. K P Huber and G Herzberg Constants of diatomic Molecules (New York: Van Nostrand Reinhold) (1979)

    Google Scholar 

  32. C Jackschath, I Rabin, W Schulze and B Bunsenges Phys. Chem. 96 1200 (1992)

    Google Scholar 

  33. H hakkinen, B Yoon, U Landman, X Li, H J Zhai and L S Wang J. Phys. Chem. A107 6168 (2003)

    Google Scholar 

  34. M E Eberhart, R C Handley and K H Johnson Phys. Rev. B29 1097 (1984)

    ADS  Google Scholar 

  35. M Zhang, L M He, L X Zhao, X J Feng, W Cao and Y H Luo J. Molec. Struc (THEOCHEM) 911 65 (2009)

    Article  Google Scholar 

  36. M B Torres, E M Fernández and L C Balbás Phys. Rev. B71 155412 (2006)

    Google Scholar 

  37. C Majumder, A. K. Kandalam and P Jena Phys. Rev. B74 205437 (2006)

    ADS  Google Scholar 

  38. E Janssens, H Tanaka, S Neukermans, R E Silverans and P Lievens Phys. Rev. B69 085402 (2004)

    ADS  Google Scholar 

  39. I Panas, P Siegbahn and U Walhgren Chem. Phys. 112 325 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-jun Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, Xj., Wang, Xq. & Liu, Gb. Structural stability and electronic properties of Au5H n (n=1–10) clusters. Indian J Phys 85, 281–292 (2011). https://doi.org/10.1007/s12648-011-0004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-011-0004-z

Keywords

Navigation