Skip to main content
Log in

Mechanical, Elastic and Microstructural Investigations on HCP Phase High-Entropy Alloys

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

Hexagonal-structured high-entropy alloys (HEAs) are in use for engineering materials, for critical components in chemical processing, power generation and gas turbine. The present work described how HEAs behave regarding their thermophysical properties and their exceptional elastic and mechanical properties. In the beginning, higher-order elastic constants (HOECs) of the HEAs, namely Cr10Mn30Fe50Co10, Cr20Mn20Fe34Co20Ni6, Cr20Mn20Fe30Co20Ni10, Cr20Mn20Fe20Co20Ni20 and Cr25Fe25Co25Ni25, in their hcp phase have been computed with the help of simple interaction potential approach. Utilizing HOECs, the elastic moduli, anisotropy factor (fE), Pugh’s ratio (B/G), Kleinman’s parameter (ζ), Poisson’s ratio (σ), microhardness (H), Vicker’s hardness (HV), Lame’s constants (λ and µ) and ratio of linear compressibility coefficients (f) have been computed. Later on, the Grüneisen parameter for the shear wave and longitudinal wave of considered HEAs has been calculated utilizing the obtained values of HOECs and lattice parameters. The results of second-order elastic constants were compared with the results obtained from different theories. The obtained results may be further explored for determining the inherent properties of HEAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko and V.M. Beresnev, The structure and properties of high-entropy alloys and nitride coatings based on them. Russ. Chem. Rev., 83 (2014) 1027–1061.

    Article  ADS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun and C.H. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6 (2004) 299–303.

    Article  Google Scholar 

  3. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345 (2014) 1153–1158.

    Article  ADS  Google Scholar 

  4. M.A. Meyers and K.K. Chawla, Mechanical behavior of materials, Cambridge University Press Cambridge (2009).

  5. R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater., 10 (2011) 817–822.

    Article  ADS  Google Scholar 

  6. O.N. Senkov, S.V. Senkova, C.F. Woodward and D.B. Miracle, Low-density refractory multi-principal element alloys of the Cr-NbTi-V-Zr system: microstructure and phase analysis. Acta Mater., 61 (2013) 1545–1557.

    Article  ADS  Google Scholar 

  7. Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang and X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett., 130 (2014) 277–280.

    Article  Google Scholar 

  8. Y.J. Zhao, J.W. Qiao, S.G. Ma, M.C. Gao, H.J. Yang, M.W. Chen and Y. Zhang, A hexagonal close-packed high-entropy alloy: the efect of entropy. Mater. Des., 96 (2016) 10–15.

    Article  Google Scholar 

  9. A. Takeuchi, K. Amiya, T. Wada, K. Yubuta and W. Zhang, High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM, 66 (2014) 1984–1992.

    Article  Google Scholar 

  10. K.V. Yusenko, S. Riva, A.C. Patricia, M.V. Yusenko, S. Arnaboldi, S.S. Aleksandr, M. Hanfland and A.S. Gromilov, First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater., 138 (2017) 22–27.

    Article  Google Scholar 

  11. M. Feuerbacher, M. Heidelmann and C. Tomas, Hexagonal high-entropy alloys. Mater. Res. Lett., 3 (2015) 1–6.

    Article  Google Scholar 

  12. D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater., 122 (2017) 448–511.

    Article  ADS  Google Scholar 

  13. Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T.S. Chin and S.-K. Chen, Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloy. Compd., 506 (2010) 210–215.

    Article  Google Scholar 

  14. X. Li, F. Tian and S. Schönecker, Ab-initio-predicted micro-mechanical performance of refractory high-entropy alloys. Sci. Rep., 5 (2015) 12334.

    Article  ADS  Google Scholar 

  15. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534(7606) (2016) 227–230.

    Article  ADS  Google Scholar 

  16. Z. Li and D. Raabe, Strong and ductile non-equiatomic high-entropy alloys: design, processing, microstructure, and mechanical properties. JOM, 21 (2017) 1–8.

    Google Scholar 

  17. C.L. Tracy, High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun., 8 (2017) 15634.

    Article  ADS  Google Scholar 

  18. C. Wagner, A. Ferrari, J. Schreuer, J.-P. Couzinié, Y. Ikeda, F. Körmann, G. Eggeler, E.P. George and G. Laplanche, Effects of Cr/Ni ratio on physical properties of Cr-Mn-Fe-Co-Ni high-entropy alloys. Acta Mater., 227 (2022) 117693.

    Article  Google Scholar 

  19. F.X. Zhang, Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys. Appl. Phys. Lett., 110 (2017) 011902.

    Article  ADS  Google Scholar 

  20. K.V. Yusenko, S. Riva, P.A. Carvalho, M.V. Yusenko, S. Arnaboldi, A.S. Sukhikh, M. Hanfland and S.A. Gromilov, First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater., 138 (2017) 22–27.

    Article  Google Scholar 

  21. X. Li, L.I. Douglas and V. Levente, First-principles investigation of the micromechanical properties of fcc-hcp polymorphic high-entropy alloys. Sci. Rep., 8 (2018) 11196.

    Article  ADS  Google Scholar 

  22. Y. Tong, L. Bai, X. Liang, Y. Chen, Z. Zhang, J. Liu, Y. Li and Y. Hu, Influence of alloying elements on mechanical and electronic properties NbMoTaWX (X = Cr, Zr, V, Hf and Re) refractory high entropy alloys. Intermetallics, 126 (2020) 106928.

    Article  Google Scholar 

  23. C.P. Yadav, D.K. Pandey and D. Singh, Ultrasonic study of Laves phase compounds ScOs2 and YOs2. Indian J. Phys., 93 (2019) 1147–1153.

    Article  ADS  Google Scholar 

  24. K. Brugger, Thermodynamic definition of higher order elastic coefficients. Phys. Rev. A., 133 (1964) 1611-A1612.

    Article  ADS  MATH  Google Scholar 

  25. S.P. Singh, G. Singh, A.K. Verma, P. K. yadawa and R. R. Yadav, Ultrasonic wave propagation in thermoelectric ZrX2 (X = S, Se) compounds. Pramana–J. Phys., 93 (2019) 83.

    Article  ADS  Google Scholar 

  26. D.K. Pandey and R.R. Yadav, Temperature dependent ultrasonic properties of aluminium nitride. Appl. Acoust., 70 (2009) 412–415.

    Article  Google Scholar 

  27. D.K. Pandey, P.K. Yadawa and R.R. Yadav, Ultrasonic properties of hexagonal ZnS at nanoscale. Mater. Lett., 61 (2007) 5194–5198.

    Article  Google Scholar 

  28. P.K. Dhawan, S. Upadhyaya and S.K. Verma, Size and temperature dependent ultrasonic properties of thermoelectric nanowires. Mater. Lett., 114 (2014) 15–18.

    Article  Google Scholar 

  29. W. Voigt, Lehrbuch der kristallphysik (mitausschluss der kristalloptik), Leipzig Berlin, B.G. Teubner (1928).

  30. A. Reuss, Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech., 9 (1929) 49–58.

    Article  MATH  Google Scholar 

  31. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A., 65 (1952) 349–354.

    Article  ADS  Google Scholar 

  32. N. Turkdal, E. Deligoz and H. Ozisik, First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2. Phase Trans., 90 (2017) 598–609.

    Article  Google Scholar 

  33. P.F. Weck, E. Kim and V. Tikare, Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory. Dalton Trans., 4 (2015) 18769–18779.

    Article  Google Scholar 

  34. B. Jyoti, S. Tripathi, S.P. Singh, D. K. Singh and D. Singh, Elastic, mechanical, thermo-physical, and ultrasonic investigation in platinum carbide, Mater. Today Commun. 27 (2021) 102189.

    Google Scholar 

  35. N.E. Koval, J.I. Juaristi, R.D. Muino and M. Alducin, Elastic properties of the TiZrNbTaMo multi-principal element alloy studied from first principles. Intermetallics, 106 (2019) 130–140.

    Article  Google Scholar 

  36. Y.J. Sun, K. Xiong, S.M. Zhang and Y. Mao, First-Principles investigations on the elastic properties of platinum group metals (Pt, Pd, and Ru). Mater. Sci. Forum, 944 (2019) 761–769.

    Article  Google Scholar 

  37. A.K. Maddheshiya, S.P. Singh, D. Singh, P.S. Yadav and R.R. Yadav, Non-linear thermophysical behaviour of transition metal titanium. Johns. Matthey Technol. Rev. (2022). https://doi.org/10.1595/205651323X16653975448311.

    Article  Google Scholar 

  38. P.K. Dhawan, M. Wan, S.K. Verma, D.K. Pandey and R.R. Yadav, Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires. J. Appl. Phys., 117 (2015) 074307.

    Article  ADS  Google Scholar 

  39. S. Tripathi, R. Agarwal and D. Singh, Elastic, mechanical and ultrasonic properties of nanostructured IIIrd group phosphides. MAPAN-J. Metrol. Soc India, 36 (2021) 97–107.

    Google Scholar 

  40. S. Tripathi, R. Agarwal and D. Singh, Size-Dependent Ultrasonic and Thermophysical Properties of Indium Phosphide Nanowires. Z. Naturforsch A 75 (2020) 373.

    Article  ADS  Google Scholar 

  41. D. Tromans, Elastic anisotropy of hcp metal crystals and polycrystals. Int. J. Res. Rev. Appl. Sci., 6 (2011) 462–483.

    MathSciNet  Google Scholar 

  42. K.A. Matori, M.H.M. Zaid, H.A.A. Sidek, M.K. Halimah, Z.A. Wahab and M.G.M. Sabri, Influence of ZnO on the ultrasonic velocity and elastic moduli of soda lime silicate glasses. Int. J. Phys. Sci., 5 (2010) 2212.

    Google Scholar 

  43. N. Yadav, S. P. Singh, A. K. Maddheshiya, P. K. Yadawa, R. R. Yadav: Mechanical and thermophysical properties of high-temperature IrxRe1−xalloys, Phase Trans. (2020).

  44. M.E. Fine, L.D. Brown and H.L. Marcus, Elastic constants versus melting temperature in metals. Scr. Metall., 18 (1984) 951–956.

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Ajit Kumar Maddheshiya is grateful for the financial support from UGC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Kumar Maddheshiya.

Ethics declarations

Conflict of interest

The authors reported no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddheshiya, A.K., Yadav, N., Singh, S.P. et al. Mechanical, Elastic and Microstructural Investigations on HCP Phase High-Entropy Alloys. MAPAN 38, 1019–1026 (2023). https://doi.org/10.1007/s12647-023-00674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-023-00674-6

Keywords

Navigation