Skip to main content
Log in

Design of the Ion Trap and Vacuum System for 171Yb-ion Optical Frequency Standard

  • Original Paper
  • Published:
MAPAN Aims and scope Submit manuscript

Abstract

We are developing a frequency standard based on the ultra-narrow electric octupole transition of the ytterbium-ion (171Yb+), which is in the optical wavelength region. In this article, we describe optimized design of our end-cap type Paul trap which will be used for trapping single ions for precision frequency metrology. Selection of the materials for fabricating different parts of the trap assembly is also described. Customized design of the ultra-high vacuum chamber, which houses the ion trap, oven producing ytterbium atomic beam, compensation electrodes and high numerical aperture fluorescence collection lens together with four pairs of optical viewports is lastly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T.P. Heavener, E.A. Donley, F. Levi, G. Costanzo, T.E. Parker, J.H. Shirley, N. Ashby, S. Barlow and S.R. Jefferts, First accuracy evaluation of NIST-F2, Metrologia, 51 (2014) 174–182.

    Article  ADS  Google Scholar 

  2. K. Szymaniec, S. Lea and K. Liu, An evaluation of the frequency shift caused by collisions with background gas in the primary frequency standard NPL-CsF2, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 (2014) 203–206.

    Article  Google Scholar 

  3. M. Takamoto, F.L. Hong, R. Higashi and H. Katori, An optical lattice clock, Nature, 435 (2005) 323–324.

    Article  ADS  Google Scholar 

  4. H.G. Dehmelt, Monoion oscillator as potential ultimate laser frequency standard, IEEE Trans. Instrum. Meas., 31 (1982) 83–87.

    Article  ADS  Google Scholar 

  5. T.L. Nicholson, M.J. Martin, J.R. Williams, B.J. Bloom, M. Bishof, M.D. Swallows, S.L. Campbell and J. Ye, Comparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 s, Phys. Rev. Lett., 109 (2012) 230801.

    Article  ADS  Google Scholar 

  6. N. Hinkley, J.A. Sherman, N.B. Phillips, M. Schioppo, N.D. Lemke, K. Beloy, M. Pizzocaro, C.W. Oates and A.D. Ludlow, An atomic clock with 10−18 instability, Science, 341 (2013) 1215–1218.

    Article  ADS  Google Scholar 

  7. T. Rosenband, D.B. Hume, P.O. Schmidt, C.W. Chou, A. Brusch, L. Lorini, W.H. Oskay, R.E. Drullinger, T.M. Fortier, J.E. Stalnaker, S.A. Diddams, W.C. Swann, N.R. Newbury, W.M. Itano, D.J. Wineland and J.C. Bergquist, Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place, Science, 319 (2008) 1808–1812.

    Article  ADS  Google Scholar 

  8. R.M. Godun, P.B.R. Nisbet-Jones, J.M. Jones, S.A. King, L.A.M. Johnson, H.S. Margolis, K. Szymaniec, S.N. Lea, K. Bongs and P. Gill, Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants, Phys. Rev. Lett., 113 (2014) 210801.

    Article  ADS  Google Scholar 

  9. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers and E. Peik, Improved limit on a temporal variation of m p /m e from comparisons of Yb+ and Cs atomic clocks, Phys. Rev. Lett., 113 (2014) 210802.

    Article  ADS  Google Scholar 

  10. Y.H. Wang, R. Dumke, T. Liu, A. Stejskal, Y.N. Zhao, J. Zhang, Z.H. Lu, L.J. Wang, T. Becker and H. Walther, Absolute frequency measurement and high resolution spectroscopy of 115In+ 5s21S0–5s5p 3P0 narrowline transition, Opt. Commun., 273 (2007) 526–531.

    Article  ADS  Google Scholar 

  11. G.P. Barwood,G. Huang, H.A. Klein, L.A.M. Johnson, S.A. King, H.S. Margolis, K. Szymaniec and P. Gill, Agreement between two 88Sr+ optical clocks to 4 parts in 1017, Phys. Rev. A, 89 (2014) 050501.

    Article  ADS  Google Scholar 

  12. Y. Huang, P. Liu, W. Bian, H. Guan, K. Gao, Evaluation of the systematic shifts and absolute frequency measurement of a single Ca+ ion frequency standard, Appl. Phys. B, 114 (2014) 189–201.

    Article  ADS  Google Scholar 

  13. C.W. Chou, D.B. Hume, J.C.J. Koelemeij, D.J. Wineland and T. Rosenband, Frequency comparison of two high-accuracy Al+ optical clocks, Phys. Rev. Lett., 104 (2010) 070802.

    Article  ADS  Google Scholar 

  14. M.G. Raizen, J.M. Gilligan, J.C. Bergquist, W.M. Itano and D.J. Wineland, Ionic crystals in a linear Paul trap, Phys. Rev. A, 45 (1992) 6493.

    Article  ADS  Google Scholar 

  15. W. Paul and M. Raether, Das elektrische massenfilter, Z. Phys. 140 (1955) 262–273.

    Article  ADS  Google Scholar 

  16. W. Neuhauser, M. Hohenstatt, P. Toschek and H. Dehmelt, Optical-sideband cooling of visible atom cloud confined in parabolic well, Phys. Rev. Lett., 41 (1978) 233236.

    Article  Google Scholar 

  17. C.A. Schrama, E. Peik, W.W. Smith and H. Walther, Novel miniature ion traps, Opt. Commun., 101 (1993) 32–36.

    Article  ADS  Google Scholar 

  18. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano and D.J. Wineland, Laser-cooled mercury ion frequency standard, Phys. Rev. Lett., 80 (1998) 2089–2092.

    Article  ADS  Google Scholar 

  19. P. Taylor, M. Roberts, S.V. Gateva-Kostova, R.B.M. Clarke, G.P. Barwood, W.R.C. Rowley and P. Gill, Investigation of the 2S1/2 − 2D5/2 clock transition in a single ytterbium ion, Phys. Rev. A, 56 (1997) 2699–2704.

    Article  ADS  Google Scholar 

  20. W.H. Oskay, W.M. Itano and J.C. Bergquist, Measurement of the 199Hg+ 5d96 s2 2D5/2 electric quadrupole moment and a constraint on the quadrupole shift, Phys. Rev. Lett. 94 (2005) 163001.

    Article  ADS  Google Scholar 

  21. B. Stein, Contributions to a Yb+ single ion optical frequency standards, PhD thesis, University of Hannover (2010).

  22. S.A. King, R.M. Godun, S.A. Webster, H.S. Margolis, L.A.M. Johnson, K. Szymaniec, P.E.G. Baird and P. Gill, Absolute frequency measurement of the 2S1/22F7/2 electric octupole transition in a single ion of 171Yb+ with 10−15 fractional uncertainty, New J. Phys., 14 (2012) 013045.

    Article  ADS  Google Scholar 

  23. A.G. Sinclair, M.A. Wilson and P. Gill, Improved three-dimensional control of a single strontium ion in an endcap trap, Opt. Commun., 190 (2001) 193–203.

    Article  ADS  Google Scholar 

  24. P. Dube, A.A. Madej, Z. Zhou and J.E. Bernard, Evaluation of systematic shifts of the 88Sr+ single-ion optical frequency standard at the 10−17 level, Phys. Rev. A, 87 (2013) 023806.

    Article  ADS  Google Scholar 

  25. S. De, N. Batra, S. Chakraborty, S. Panja and A. Sen Gupta, Design of an ion trap for trapping single 171Yb+, Curr. Sci., 106 (2014) 1348–1352.

    Google Scholar 

  26. N. Batra, S. De, A. Sen Gupta, S. Singh, A. Arora and B. Arora, Systematic shifts for ytterbium-ion optical frequency standards, Manuscript is communicated to SCI journal (2014). http://arxiv.org/pdf/1405.5399.pdf.

  27. N. Batra, S. De, A. Rastogi, S. Panja and A. Sen Gupta, Effects of a nearly ideal quadrupole ion trap for optical frequency standards. In: Proceeding of CDAMOP 2015 conference in the international journal-journal of atomic, molecular, condensate and nano physics. Manuscript is communicated (2015).

  28. C. Liu, D. Ryding, R.W. Nielsen, T.L. Kruy and T.M. Kuzay, Cleaning and outgassing studies of machinable tungsten for beamline safety shutters, Rev. Sci. Instrum., 67 (1996) 3378.

    ADS  Google Scholar 

  29. D.A. Hite, Y. Colombe, A.C. Wilson, D.T.C. Allcock, D. Leibfried, D.J. Wineland and D.P. Pappas, Surface science for improved ion traps, MRS Bull., 38 (2013) 826–833.

    Article  Google Scholar 

  30. K. Pant, P. Arora, S. Yadav and A. Sen Gupta, Generation of quadrupole magnetic field for trapping atoms in Cs fountain being developed at NPL India. MAPAN-J. Metrol. Soc India, 26 (2011) 285–294.

    MATH  Google Scholar 

  31. A. Agarwal and A. Sen Gupta, Frequency and intensity control of lasers to cool and control caesium atoms. MAPAN-J. Metrol. Soc India, 27 (2012) 169–173.

    Google Scholar 

  32. P. Arora, S.B. Purnapatra, A. Acharya, R. Kumar and A. Sen Gupta, Measurement of temperature of atomic cloud using time-of-flight technique. MAPAN-J. Metrol. Soc India, 27 (2012) 31–39.

    Google Scholar 

  33. P. Arora, S.B. Purnapatra, A. Acharya, A. Agarwal, S. Yadav, K. Pant and A. Sen Gupta, NPLI cesium atomic fountain frequency standard: preliminary results, IEEE Trans. Instrum. Meas., 62 (2013) 2037–2042.

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Sen Gupta for useful discussions and acknowledge CSIR-CSIO for fabricating the trap assembly using their precision machining facility. S. DE acknowledges CSIR-NPL, SERB-DST (No. SB/S2/LOP/033/2013) and DAE-BRNS (No. 34/14/19/2014-BRNS/0309) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastogi, A., Batra, N., Roy, A. et al. Design of the Ion Trap and Vacuum System for 171Yb-ion Optical Frequency Standard. MAPAN 30, 169–174 (2015). https://doi.org/10.1007/s12647-015-0140-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12647-015-0140-6

Keywords

Navigation