Skip to main content
Log in

Citronellol Prevents 6-OHDA-Induced Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Parkinson Disease Model of SH-SY5Y Cells via Modulating ROS-NO, MAPK/ERK, and PI3K/Akt Signaling Pathways

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Parkinson disease is a neurodegenerative disorder distinguished by dopaminergic shortage in the striatum and the accumulation of α-synuclein neuronal aggregates in the brains of patients. Since, there is no accurate treatment available for Parkinson disease, researches are designed to alleviate the pathognomonic symptoms such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis. Accordingly, a number of compounds have been reported to inhibit these pathognomonic symptoms. In this study, we have assessed the neuroprotective potential of citronellol against 6-OHDA-induced neurotoxicity in SH-SY5Y cells. The results found that citronellol treatment effectively hindered the cell death caused by 6-OHDA and thereby maintaining the cell viability in SH-SY5Y cells at 50 µg/mL concentration. As expected, the citronellol treatment significantly reduced the 6-OHDA-induced secretion of inflammatory factors (IL-1β, IL-6, and TNF-α), which was obtained through ELISA technique. Similarly, citronellol hindered the 6-OHDA-induced oxidative stress by lowering the intracellular ROS and NO level and MDA leakage along with increased expression of SOD level in SH-SY5Y cells. The JC-1 staining showed that 6-OHDA increased the number of green fluorescent dots with ruptured mitochondrial membrane potential, while citronellol increased the amount of red fluorescent, showing the rescue potential against the 6-OHDA-induced mitochondrial dysfunction. Furthermore, citronellol hampered the 6-OHDA-induced apoptosis via the suppression of Bcl-2/Bax pathway. The western blotting results hypothesized that citronellol rescued SH-SY5Y cells from 6-OHDA-induced neurotoxicity via modulating ROS-NO, MAPK/ERK, and PI3K/Akt signaling pathways. However, further clinical trials are required to verify the anti-Parkinson efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the data presented in the study are included in the article/Supplementary Material.

References

  • Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, Weintraub D (2021) Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers 7(1):1–21

    Google Scholar 

  • Agnihotri A, Aruoma OI (2020) Alzheimer’s disease and Parkinson’s disease: a nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J Am Coll Nutr 39(1):16–27

    Article  CAS  Google Scholar 

  • Alrashidi H, Eaton S, Heales S (2021) Biochemical characterization of proliferative and differentiated SH-SY5Y cell line as a model for Parkinson’s disease. Neurochem Int 1(145):105009

    Article  Google Scholar 

  • Athauda D, Foltynie T (2016) The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discovery Today 21:802–818

    Article  CAS  Google Scholar 

  • Avagliano C, Russo R, De Caro C, Cristiano C, La Rana G, Piegari G, Paciello O, Citraro R, Russo E, De Sarro G, Meli R (2016) Palmitoylethanolamide protects mice against 6-OHDA-induced neurotoxicity and endoplasmic reticulum stress: in vivo and in vitro evidence. Pharmacol Res 1(113):276–289

    Article  Google Scholar 

  • Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK (2020) G-protein-coupled receptors in CNS: a potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits. Cells 9(2):506

  • Balestrino R, Schapira AH (2020) Parkinson disease. Eur J Neurol 27(1):27–42

    Article  CAS  Google Scholar 

  • Belloli S, Morari M, Murtaj V, Valtorta S, Moresco RM, Gilardi MC (2020) Translation imaging in Parkinson’s disease: focus on neuroinflammation. Front Aging Neurosci 5(12):152

    Article  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 8(9):91

    Google Scholar 

  • Bo RX, Li YY, Zhou TT, Chen NH, Yuan YH (2022) The neuroinflammatory role of glucocerebrosidase in Parkinson’s disease. Neuropharmacology 19:108964

    Article  Google Scholar 

  • Bodis-Wollner I, Kozlowski PB, Glazman S, Miri S (2014) α-synuclein in the inner retina in Parkinson disease. Ann Neurol 75(6):964–966

    Article  CAS  Google Scholar 

  • Brito RG, Guimarães AG, Quintans JS, Santos MR, De Sousa DP, Badaue-Passos D, de Lucca W, Brito FA, Barreto EO, Oliveira AP, Quintans LJ (2012) Citronellol, a monoterpene alcohol, reduces nociceptive and inflammatory activities in rodents. J Nat Med 66(4):637–644

    Article  CAS  Google Scholar 

  • Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(4):437–441

    Article  CAS  Google Scholar 

  • Caggiu E, Arru G, Hosseini S, Niegowska M, Sechi G, Zarbo IR, Sechi LA (2019) Inflammation, infectious triggers, and Parkinson’s disease. Front Neurol 122

  • Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W, Liu J (2008) Polyhydroxylated fullerene derivative C60 (OH) 24 prevents mitochondrial dysfunction and oxidative damage in an MPP+-induced cellular model of Parkinson’s disease. J Neurosci Res 86(16):3622–3634

    Article  CAS  Google Scholar 

  • Cao F, Souders CL II, Perez-Rodriguez V, Martyniuk CJ (2019) Elucidating conserved transcriptional networks underlying pesticide exposure and Parkinson’s disease: a focus on chemicals of epidemiological relevance. Front Genet 25(9):701

    Article  Google Scholar 

  • Chavarría C, Perez DI, Pérez C, Garcia JA, Alonso-Gil S, Pérez-Castillo A, Gil C, Souza JM, Porcal W (2012) Microwave-assisted synthesis of hydroxyphenyl nitrones with protective action against oxidative stress. Eur J Med Chem 1(58):44–49

    Article  Google Scholar 

  • Cheng B, Yang X, Hou Z, Lin X, Meng H, Li Z, Liu S (2007) D-β-hydroxybutyrate inhibits the apoptosis of PC12 cells induced by 6-OHDA in relation to up-regulating the ratio of Bcl-2/Bax mRNA. Auton Neurosci 134(1–2):38–44

    Article  CAS  Google Scholar 

  • Cirmi S, Maugeri A, Lombardo GE, Russo C, Musumeci L, Gangemi S, Calapai G, Barreca D, Navarra M (2021) A flavonoid-rich extract of mandarin juice counteracts 6-OHDA-induced oxidative stress in SH-SY5Y cells and modulates Parkinson-related genes. Antioxidants 10(4):539

    Article  CAS  Google Scholar 

  • Cocoros NM, Svensson E, Szépligeti SK, Vestergaard SV, Szentkúti P, Thomsen RW, Borghammer P, Sørensen HT, Henderson VW (2021) Long-term risk of Parkinson disease following influenza and other infections. JAMA Neurol 78(12):1461–1470

    Article  Google Scholar 

  • Dai YL, Jiang YF, Lee HG, Jeon YJ, Kang MC (2019) Characterization and screening of anti-tumor activity of fucoidan from acid-processed hijiki (Hizikia fusiforme). Int J Biol Macromol 15(139):170–180

    Article  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  CAS  Google Scholar 

  • Dey K, Bazala MA, Kuznicki J (2020) Targeting mitochondrial calcium pathways as a potential treatment against Parkinson’s disease. Cell Calcium 1(89):102216

    Article  Google Scholar 

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3(4):461–491

    Article  CAS  Google Scholar 

  • Dionísio PA, Amaral JD, Rodrigues CM (2021) Oxidative stress and regulated cell death in Parkinson’s disease. Ageing Res Rev 1(67):101263

    Article  Google Scholar 

  • Feng CW, Wen ZH, Huang SY, Hung HC, Chen CH, Yang SN, Chen NF, Wang HM, Hsiao CD, Chen WF (2014) Effects of 6-hydroxydopamine exposure on motor activity and biochemical expression in zebrafish (Danio rerio) larvae. Zebrafish 11(3):227–239

    Article  CAS  Google Scholar 

  • Ferlazzo N, Cirmi S, Maugeri A, Russo C, Lombardo GE, Gangemi S, Calapai G, Mollace V, Navarra M (2020) Neuroprotective effect of bergamot juice in 6-OHDA-induced SH-SY5Y cell death, an in vitro model of Parkinson’s disease. Pharmaceutics 12(4):326

    Article  CAS  Google Scholar 

  • Flores-Romero H, Hohorst L, John M, Albert MC, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, Frenzel LP (2022) BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J 41(2):e108690

    Article  CAS  Google Scholar 

  • Gattellaro G, Minati L, Grisoli M, Mariani C, Carella F, Osio M, Ciceri E, Albanese A, Bruzzone MG (2009) White matter involvement in idiopathic Parkinson disease: a diffusion tensor imaging study. Am J Neuroradiol 30(6):1222–1226

    Article  CAS  Google Scholar 

  • Gong P, Deng F, Zhang W, Ji J, Liu J, Sun Y, Hu J (2017) Tectorigenin attenuates the MPP+-induced SH-SY5Y cell damage, indicating a potential beneficial role in Parkinson’s disease by oxidative stress inhibition. Exp Ther Med 14(5):4431–4437

    CAS  Google Scholar 

  • Gressens P, Marret S, Martin JL, Laquerrière A, Lombet A, Evrard P (1998) Regulation of neuroprotective action of vasoactive intestinal peptide in the murine developing brain by protein kinase C and mitogen-activated protein kinase cascades: in vivo and in vitro studies. J Neurochem 70(6):2574–2584

    Article  CAS  Google Scholar 

  • Gunjima K, Tomiyama R, Takakura K, Yamada T, Hashida K, Nakamura Y, Konishi T, Matsugo S, Hori O (2014) 3, 4-dihydroxybenzalacetone protects against Parkinson’s disease-related neurotoxin 6-OHDA through Akt/Nrf2/glutathione pathway. J Cell Biochem 115(1):151–160

    Article  CAS  Google Scholar 

  • Guo S, Bezard E, Zhao B (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS–NO pathway. Free Radical Biol Med 39(5):682–695

    Article  CAS  Google Scholar 

  • Haddadi R, Nayebi AM, Brooshghalan SE (2018) Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomed Pharmacother 1(104):127–136

    Article  Google Scholar 

  • Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4(11):600–609

    Article  CAS  Google Scholar 

  • Ikeda Y, Tsuji S, Satoh A, Ishikura M, Shirasawa T, Shimizu T (2008) Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 107(6):1730–1740

    Article  CAS  Google Scholar 

  • Impellizzeri D, Campolo M, Bruschetta G, Crupi R, Cordaro M, Paterniti I, Cuzzocrea S, Esposito E (2016) Traumatic brain injury leads to development of Parkinson’s disease related pathology in mice. Front Neurosci 13(10):458

    Google Scholar 

  • Jagdale AD, Kamble SP, Nalawade ML, Arvindekar AU (2015) Citronellol: a potential antioxidant and aldose reductase inhibitor from Cymbopogon citratus. Int J Pharm Pharm Sci 7:203–209

    CAS  Google Scholar 

  • Jayaram S, Krishnamurthy PT (2021) Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: the therapeutic role of Nrf2 activators. Neurochem Int 1(145):105014

    Article  Google Scholar 

  • Jiang H, Yu Y, Liu S, Zhu M, Dong X, Wu J, Zhang Z, Zhang M, Zhang Y (2019) Proteomic study of a Parkinson’s disease model of undifferentiated SH-SY5Y cells induced by a proteasome inhibitor. Int J Med Sci 16(1):84

    Article  CAS  Google Scholar 

  • Jin X, Liu Q, Jia L, Li M, Wang X (2015) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol 35(3):323–333

    Article  CAS  Google Scholar 

  • Ju MS, Lee P, Kim HG, Lee KY, Hur J, Cho SH, Sung SH, Oh MS (2010) Protective effects of standardized Thuja orientalis leaves against 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Toxicol in Vitro 24(3):759–765

    Article  CAS  Google Scholar 

  • Kheradmand A, Nayebi AM, Jorjani M, Khalifeh S, Haddadi R (2016) Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: possible involvement of oxidative stress and inflammatory cytokines. Neurosci Lett 3(627):7–12

    Article  Google Scholar 

  • Kim SM, Park YJ, Shin MS, Kim HR, Kim MJ, Lee SH, Yun SP, Kwon SH (2017) Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model. Bioorg Med Chem Lett 27(23):5207–5212

    Article  CAS  Google Scholar 

  • Kojima H, Urano Y, Kikuchi K, Higuchi T, Hirata Y, Nagano T (1999) Fluorescent indicators for imaging nitric oxide production. Angew Chem Int Ed 38(21):3209–3212

    Article  CAS  Google Scholar 

  • Koziorowski D, Tomasiuk R, Szlufik S, Friedman A (2012) Inflammatory cytokines and NT-proCNP in Parkinson’s disease patients. Cytokine 60(3):762–766

    Article  CAS  Google Scholar 

  • Kung HC, Lin KJ, Kung CT, Lin TK (2021) Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines 9(8):918

    Article  CAS  Google Scholar 

  • Kwon SH, Ma SX, Lee SY, Jang CG (2014) Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem Int 1(74):53–64

    Article  Google Scholar 

  • Lai CY, Lin CY, Wu CR, Tsai CH, Tsai CW (2021) Carnosic acid alleviates levodopa-induced dyskinesia and cell death in 6-hydroxydopamine-lesioned rats and in SH-SY5Y cells. Front Pharmacol 12

  • L’Episcopo F, Tirolo C, Caniglia S, Testa N, Morale MC, Serapide MF, Pluchino S, Marchetti B (2014) Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson’s disease. J Mol Cell Biol 6(1):13–26

    Article  Google Scholar 

  • Lee YY, Li MH, Tai CH, Luh JJ (2020) Corticomotor Excitability Changes Associated With Freezing of Gait in People With Parkinson Disease. Front Hum Neurosci 14:190

  • Luo Z, Zhao Y, Wang Y, Yang X, Zhao B (2011) Protective effect of theaflavins on neuron against 6-hydroxydopamine-induced apoptosis in SH-SY5Y cells. J Clin Biochem Nutri 1109120111

  • Machado-Filho JA, Correia AO, Montenegro AB, Nobre ME, Cerqueira GS, Neves KR, da Graça N-M, Cavalheiro EA, de Castro Brito GA, de Barros Viana GS (2014) Caffeine neuroprotective effects on 6-OHDA-lesioned rats are mediated by several factors, including pro-inflammatory cytokines and histone deacetylase inhibitions. Behav Brain Res 1(264):116–125

    Article  Google Scholar 

  • Madsen DA, Schmidt SI, Blaabjerg M, Meyer M (2021) Interaction between Parkin and α-synuclein in PARK2-mediated Parkinson’s disease. Cells 10(2):283

    Article  CAS  Google Scholar 

  • Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A (2021) Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson’s disease. Nat Commun 12(1):1–2

  • Mei JM, Niu CS (2014) Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol Sci 35(8):1275–1280

    Article  Google Scholar 

  • Melnik BC (2021) Synergistic effects of milk-derived exosomes and galactose on α-synuclein pathology in Parkinson’s disease and type 2 diabetes mellitus. Int J Mol Sci 22(3):1059

    Article  CAS  Google Scholar 

  • Melo MS, Guimarães AG, Santana MF, Siqueira RS, De Lima AD, Dias AS, Santos MR, Onofre AS, Quintans JS, De Sousa DP, Almeida JR (2011) Anti-inflammatory and redox-protective activities of citronellal. Biol Res 44(4):363–368

    Article  CAS  Google Scholar 

  • Menza M, Dobkin RD, Marin H, Mark MH, Gara M, Bienfait K, Dicke A, Kusnekov A (2010) The role of inflammatory cytokines in cognition and other non-motor symptoms of Parkinson’s disease. Psychosomatics 51(6):474–479

    CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm 107(3):335–341

    Article  CAS  Google Scholar 

  • Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33(3):589–597

    Article  CAS  Google Scholar 

  • Pajares M, Rojo IA, Manda G, Boscá L, Cuadrado A (2020) Inflammation in Parkinson’s disease: mechanisms and therapeutic implications. Cells 9(7):1687

  • Palma JA, Kaufmann H (2018) Treatment of autonomic dysfunction in Parkinson disease and other synucleinopathies. Mov Disord 33(3):372–390

    Article  Google Scholar 

  • Park SY, Kang JK, Park G, Choi YW (2014) Involvement of activation of the Nrf2/ARE pathway in protection against 6-OHDA-induced SH-SY5Y cell death by α-iso-cubebenol. Neurotoxicology 1(44):160–168

    Article  Google Scholar 

  • Pemberton JM, Pogmore JP, Andrews DW (2021) Neuronal cell life, death, and axonal degeneration as regulated by the BCL-2 family proteins. Cell Death Differ 28(1):108–122

    Article  CAS  Google Scholar 

  • Perlbarg V, Lambert J, Butler B, Felfli M, Valabrègue R, Privat AL, Lehéricy S, Petiet A (2018) Alterations of the nigrostriatal pathway in a 6-OHDA rat model of Parkinson’s disease evaluated with multimodal MRI. PLoS ONE 13(9):e0202597

    Article  Google Scholar 

  • Perni M, Galvagnion C, Maltsev A, Meisl G, Müller MB, Challa PK, Kirkegaard JB, Flagmeier P, Cohen SI, Cascella R, Chen SW (2017) A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc Natl Acad Sci 114(6):E1009–E1017

    Article  CAS  Google Scholar 

  • Piancone F, Saresella M, La Rosa F, Marventano I, Meloni M, Navarro J, Clerici M (2021) Inflammatory responses to monomeric and aggregated α-synuclein in peripheral blood of parkinson disease patients. Front Neurosci 15

  • Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE, Lang AE (2017) Parkinson disease. Nat Rev Dis Primers 3(1):1–21

    Article  Google Scholar 

  • Potter H, Woodcock JH, Boyd TD, Coughlan CM, O’Shaughnessy JR, Borges MT, Thaker AA, Raj BA, Adamszuk K, Scott D, Adame V (2021) Safety and efficacy of sargramostim (GM-CSF) in the treatment of Alzheimer’s disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions 7(1):e12158

    Google Scholar 

  • Qneibi M, Jaradat N, Emwas N (2019) Effect of geraniol and citronellol essential oils on the biophysical gating properties of AMPA receptors. Appl Sci 9(21):4693

    Article  CAS  Google Scholar 

  • Quintans-Júnior L, Rocha RF, Caregnato FF, Moreira JC, Silva FA, Araújo AA, Santos JP, Melo MS, de Sousa DP, Bonjardim LR, Gelain DP (2011) Antinociceptive action and redox properties of citronellal, an essential oil present in lemongrass. J Med Food 14(6):630–639

    Article  Google Scholar 

  • Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378–1386

    Article  CAS  Google Scholar 

  • Richter F, Subramaniam SR, Magen I, Lee P, Hayes J, Attar A, Zhu C, Franich NR, Bove N, De La Rosa K, Kwong J (2017) A molecular tweezer ameliorates motor deficits in mice overexpressing α-synuclein. Neurotherapeutics 14(4):1107–1119

    Article  CAS  Google Scholar 

  • Santos PL, Matos JP, Picot L, Almeida JR, Quintans JS, Quintans-Júnior LJ (2019) Citronellol, a monoterpene alcohol with promising pharmacological activities-a systematic review. Food Chem Toxicol 1(123):459–469

    Article  Google Scholar 

  • Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S (2000) Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 288(2):163–166

    Article  CAS  Google Scholar 

  • Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 18(8):77

    Google Scholar 

  • Shih YT, Chen IJ, Wu YC, Lo YC (2011) San-Huang-Xie-Xin-Tang protects against activated microglia-and 6-OHDA-induced toxicity in neuronal SH-SY5Y cells. Evidence-Based Complementary and Alternative Medicine 1:2011

    Google Scholar 

  • Shrivastava P, Vaibhav K, Tabassum R, Khan A, Ishrat T, Khan MM, Ahmad A, Islam F, Safhi MM, Islam F (2013) Anti-apoptotic and anti-inflammatory effect of Piperine on 6-OHDA induced Parkinson’s rat model. J Nutr Biochem 24(4):680–687

    Article  CAS  Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11(3):151–167

    Article  CAS  Google Scholar 

  • Singh S, Das T, Ravindran A, Chaturvedi RK, Shukla Y, Agarwal AK, Dikshit M (2005) Involvement of nitric oxide in neurodegeneration: a study on the experimental models of Parkinson’s disease. Redox Rep 10(2):103–109

    Article  CAS  Google Scholar 

  • Singh S, Kumar S, Dikshit M (2010) Involvement of the mitochondrial apoptotic pathway and nitric oxide synthase in dopaminergic neuronal death induced by 6-hydroxydopamine and lipopolysaccharide. Redox Rep 15(3):115–122

    Article  CAS  Google Scholar 

  • Sodhi RK, Bansal Y, Singh R, Saroj P, Bhandari R, Kumar B, Kuhad A (2021) IDO-1 inhibition protects against neuroinflammation, oxidative stress and mitochondrial dysfunction in 6-OHDA induced murine model of Parkinson’s disease. Neurotoxicology 1(84):184–197

    Article  Google Scholar 

  • Song JX, Shaw PC, Sze CW, Tong Y, Yao XS, Ng TB, Zhang YB (2010) Chrysotoxine, a novel bibenzyl compound, inhibits 6-hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-κB modulation. Neurochem Int 57(6):676–689

    Article  CAS  Google Scholar 

  • Subramaniam SR, Chesselet MF (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol 1(106):17–32

    Article  Google Scholar 

  • Surendran S, Rajasankar S (2010) Parkinson’s disease: oxidative stress and therapeutic approaches. Neurol Sci 31(5):531–540

    Article  Google Scholar 

  • Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating CE, Joers V (2022) Inflammation and immune dysfunction in Parkinson disease. Nat Rev Immunol 4:1–7

    Google Scholar 

  • Tao L, Li X, Zhang L, Tian J, Li X, Sun X, Li X, Jiang L, Zhang X, Chen J (2011) Protective effect of tetrahydroxystilbene glucoside on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. PLoS ONE 6(10):e26055

    Article  CAS  Google Scholar 

  • Tian LL, Zhou Z, Zhang Q, Sun YN, Li CR, Cheng CH, Zhong ZY, Wang SQ (2007) Protective effect of (±) isoborneol against 6-OHDA-induced apoptosis in SH-SY5Y cells. Cell Physiol Biochem 20(6):1019–1032

    Article  CAS  Google Scholar 

  • Tiong CX, Lu M, Bian JS (2010) Protective effect of hydrogen sulphide against 6-OHDA-induced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161(2):467–480

    Article  CAS  Google Scholar 

  • Tseng WT, Hsu YW, Pan TM (2016) The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson’s disease. Food Funct 7(2):752–762

    Article  CAS  Google Scholar 

  • Wan L, Nie G, Zhang J, Luo Y, Zhang P, Zhang Z, Zhao B (2011) β-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biol Med 50(1):122–129

    Article  CAS  Google Scholar 

  • Wang YH, Yu HT, Pu XP, Du GH (2013) Baicalein prevents 6-hydroxydopamine-induced mitochondrial dysfunction in SH-SY5Y cells via inhibition of mitochondrial oxidation and up-regulation of DJ-1 protein expression. Molecules 18(12):14726–14738

    Article  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331

    Article  CAS  Google Scholar 

  • Xicoy H, Wieringa B, Martens GJ (2017) The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener 12(1):1–1

    Article  Google Scholar 

  • Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biol Med 1(62):90–101

    Article  Google Scholar 

  • Yang CP, Zhang ZH, Zhang LH, Rui HC (2016) Neuroprotective role of microRNA-22 in a 6-hydroxydopamine-induced cell model of Parkinson’s disease via regulation of its target gene TRPM7. J Mol Neurosci 60(4):445–452

    Article  CAS  Google Scholar 

  • Zhang JJ, Shi XR, Lv WW, Zhou XL, Sun YD, Li BY, Hu XL (2020) Neuroprotective effects of lindleyin on hydrogen peroxide-induced cell injury and MPTP-induced Parkinson’s disease in C57BL/6 mice. Evidence-Based Complementary and Alternative Medicine 28:2020

    Google Scholar 

  • Zhang LQ, Sa F, Chong CM, Wang Y, Zhou ZY, Chang RC, Chan SW, Hoi PM, Lee SM (2015) Schisantherin A protects against 6-OHDA-induced dopaminergic neuron damage in zebrafish and cytotoxicity in SH-SY5Y cells through the ROS/NO and AKT/GSK3β pathways. J Ethnopharmacol 21(170):8–15

    Article  Google Scholar 

  • Zhang ZJ, Cheang LC, Wang MW, Lee SM (2011) Quercetin exerts a neuroprotective effect through inhibition of the iNOS/NO system and pro-inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med 27(2):195–203

    Google Scholar 

Download references

Funding

This study was supported by Wenling Social Development Science and Technology Project (NO. 2022S00130, NO.2022S00135), and Taizhou Science and Technology Plan Project (NO. 22YWB131).

Author information

Authors and Affiliations

Authors

Contributions

JS: conceptualization performed the experiments, data analysis, and writing-original draft. XL: performed the experiments, data analysis, and writing-original draft. ML: performed the experiments, data analysis, and writing-original draft. YM: conceptualization, supervision, data analysis, and reviewing-original draft. All the authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Youbing Mao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 688 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, J., Liu, X., Lian, M. et al. Citronellol Prevents 6-OHDA-Induced Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis in Parkinson Disease Model of SH-SY5Y Cells via Modulating ROS-NO, MAPK/ERK, and PI3K/Akt Signaling Pathways. Neurotox Res 40, 2221–2237 (2022). https://doi.org/10.1007/s12640-022-00558-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00558-8

Keywords

Navigation