Skip to main content
Log in

Neuroprotective Role of MicroRNA-22 in a 6-Hydroxydopamine-Induced Cell Model of Parkinson’s Disease via Regulation of Its Target Gene TRPM7

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD), the second most prevalent neurodegenerative disorder with only symptomatic treatment available, is characterized by a progressive loss of dopaminergic neurons in the midbrain. Ample evidence indicated that microRNAs (miRs) could regulate post-transcriptional gene expression and neuronal disease. In the present study, we have evaluated the effects and mechanism of miR-22 in PC12 pheochromocytoma cells treated with 6-hydroxydopamine (6-OHDA) to mimic PD. RT-PCR results showed that the expression of miR-22 is downregulated in 6-OHDA-treated PC12 cells, and the overexpression of miR-22 significantly promoted the survival and proliferation of 6-OHDA-induced PC12 cells, whereas miR-22 inhibitor reversed these effects. In addition, PC12 cells were treated with miR-22 mimics or inhibitor following 6-OHDA administration, which medicated ROS production and upregulation or downregulation of caspase-3 activity, respectively. A luciferase reporter assay revealed that transient receptor potential melastatin 7 (TRPM7) is a direct target gene of miR-22, and miR-22 overexpression markedly downregulated the level of TRPM7. Strikingly, further analysis showed that miR-22 mediated 6-OHDA-induced PC12 cell survival and proliferation by targeting TRPM7. Taken together, the present study showed that miR-22 overexpression exhibited neuroprotective and reversal effects on the 6-OHDA-induced PC12 cell growth and apoptosis by targeting TRPM7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aarts M, Iihara K, Wei W-L, Xiong Z-G, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Schapira AH, Rodriguez-Oroz MC, Obeso JA, Cooper J (2013) Influence of microRNA deregulation on chaperone-mediated autophagy and α-synuclein pathology in Parkinson’s disease. Cell Death Dis 4:e545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asrar S, Aarts M (2013) TRPM7, the cytoskeleton and neuronal death. Channels 7:6–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berenguer J, Herrera A, Vuolo L, Torroba B, Llorens F, Sumoy L, Pons S (2013) MicroRNA 22 regulates cell cycle length in cerebellar granular neuron precursors. Mol Cell Biol 33:2706–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brichta L, Greengard P, Flajolet M (2013) Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci 36:543–554

    Article  CAS  PubMed  Google Scholar 

  • Cheng B, Guo Y, Li C, Ji B, Pan Y, Chen J, Bai B (2014) Edaravone protected PC12 cells against MPP (+)-cytoxicity via inhibiting oxidative stress and up-regulating heme oxygenase-1 expression. J Neurol Sci 343:115–119

    Article  CAS  PubMed  Google Scholar 

  • Cho HJ, Liu G, Jin SM, Parisiadou L, Xie C, Yu J, Sun L, Ma B, Ding J, Vancraenenbroeck R (2013) MicroRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum Mol Genet 22:608–620

    Article  CAS  PubMed  Google Scholar 

  • Choi PS, Zakhary L, Choi W-Y, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz RH (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57:41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chong C-M, Zhou Z-Y, Razmovski-Naumovski V, Cui G-Z, Zhang L-Q, Sa F, Hoi P-M, Chan K, Lee SM-Y (2013a) Danshensu protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Neurosci Lett 543:121–125

    Article  CAS  PubMed  Google Scholar 

  • Chong CM, Zhou ZY, Razmovski-Naumovski V, Cui GZ, Zhang LQ, Sa F, Hoi PM, Chan K, Lee SM (2013b) Danshensu protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Neurosci Lett 543:121–125

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    CAS  PubMed  Google Scholar 

  • de Mena L, Coto E, Cardo LF, Díaz M, Blázquez M, Ribacoba R, Salvador C, Pastor P, Samaranch L, Moris G (2010) Analysis of the micro-RNA-133 and PITX3 genes in Parkinson’s disease. Am J Med Genet B Neuropsychiatr Genet 153:1234–1239

    Google Scholar 

  • Eacker SM, Dawson TM, Dawson VL (2009) Understanding microRNAs in neurodegeneration. Nat Rev Neurosci 10:837–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  • Harraz MM, Dawson TM, Dawson VL (2011) MicroRNAs in Parkinson’s disease. J Chem Neuroanat 42:127–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132

    CAS  PubMed  Google Scholar 

  • Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4:131–137

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Tian S-L, Zeng Y, Li L-L, Shi J (2008) TrkA pathway (s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen–glucose deprivation. Brain Res Bull 76:124–130

    Article  CAS  PubMed  Google Scholar 

  • Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R (2013a) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8:e54222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jovicic A, Zaldivar Jolissaint JF, Moser R, Silva Santos Mde F, Luthi-Carter R (2013b) MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 8:17

    Article  CAS  Google Scholar 

  • Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G, Abeliovich A (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317:1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Jiang Y, Zhang H, Greenlee AR, Yu R, Yang Q (2010) miR-22 functions as a micro-oncogene in transformed human bronchial epithelial cells induced by anti-benzo [a] pyrene-7, 8-diol-9, 10-epoxide. Toxicol in Vitro 24:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinsonis disease. J Biotechnol 152:96–101

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinsońs disease. J Biotechnol 152:96–101

    Article  CAS  PubMed  Google Scholar 

  • Miñones-Moyano E, Porta S, Escaramís G, Rabionet R, Iraola S, Kagerbauer B, Espinosa-Parrilla Y, Ferrer I, Estivill X, Martí E (2011) MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum Mol Genet 20:3067–3078

    Article  CAS  PubMed  Google Scholar 

  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598

    Article  CAS  PubMed  Google Scholar 

  • Mouradian MM (2012) MicroRNAs in Parkinson’s disease. Neurobiol Dis 46:279–284

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Chen J, Yang J, Pan T, Zhang S, Wang Z (2010) MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity. Brain Res 1352:255–264

    Article  CAS  PubMed  Google Scholar 

  • Shinde SMS, Mohsen G, et al. (2015) Biofluid-based microRNA biomarkers for Parkinson’s disease: an overview and update. AIMS. Med Sci 2:15–25

    Google Scholar 

  • Sun H-S, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    Article  CAS  PubMed  Google Scholar 

  • Tolleson CM, Fang JY (2013) Advances in the mechanisms of Parkinson’s disease. Discov Med 15:61–66

    PubMed  Google Scholar 

  • Tonelli DDP, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB (2008) miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135:3911–3921

    Article  CAS  Google Scholar 

  • Wang G, van der Walt JM, Mayhew G, Li Y-J, Züchner S, Scott WK, Martin ER, Vance JM (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. Am J Hum Genet 82:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W-L, Sun H-S, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong Z-G, Jackson MF (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci 104:16323–16328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodgate A, MacGibbon G, Walton M, Dragunow M (1999) The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res Mol Brain Res 69:84–92

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chen L, Yang J, Ding J, Li S, Wu H, Zhang J, Fan Z, Dong W, Li X (2014) MicroRNA-22 targeting CBP protects against myocardial ischemia–reperfusion injury through anti-apoptosis in rats. Mol Biol Rep 41:555–561

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Perez-Polo JR, Qian J, Birnbaum Y (2011) The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 43:534–542

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li G, Szeto SS, Chong CM, Quan Q, Huang C, Cui W, Guo B, Wang Y, Han Y, et al. (2015) Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic Biol Med 84:331–343

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Hua Zhang.

Electronic Supplementary Material

Supplementary fig 1

miR-22 overexpression reversed the effects of 6-OHDA on SH-SY5Y cell survival and proliferation. (A) miR-22 significantly increased 6-OHDA (100 μM) induced SH-SY5Y cell death. Cell viability was measured by MTT assay; (B) PC12 cell proliferation was measured by CCK-8 assay. Experiments were repeated three times. Data are presented as mean ± SD, N = 3. * P < 0.05 vs control, # P < 0.05 vs 6-OHDA group. (GIF 70 kb)

High resolution image (TIFF 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C.P., Zhang, Z.H., Zhang, L.H. et al. Neuroprotective Role of MicroRNA-22 in a 6-Hydroxydopamine-Induced Cell Model of Parkinson’s Disease via Regulation of Its Target Gene TRPM7. J Mol Neurosci 60, 445–452 (2016). https://doi.org/10.1007/s12031-016-0828-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0828-2

Keywords

Navigation