Skip to main content
Log in

Caffeine Improves GABA Transport in the Striatum of Spontaneously Hypertensive Rats (SHR)

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release. SHR exhibited a reduced [3H]-GABA uptake and release, suggesting a defective striatal GABAergic transport system. GAT-1 appears to be the primary transporter for [3H]-GABA uptake in SHR striatum, as GAT-1 selective blocker, NO-711, completely abolished it. We also verified that acute exposure of striatal slices to caffeine improved [3H]-GABA uptake and release in SHR, whereas Wistar rats were not affected. GABA-uptake increase and cAMP accumulation promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA). As expected, the pharmacological blockade of cAMP-PKA signaling by H-89 also prevented caffeine-mediated [3H]-GABA uptake increment. Interestingly, a single caffeine exposure did not affect GAT-1 or A1R protein density in SHR, which was not different from Wistar protein levels, suggesting that the GAT-1-dependent transport in SHR has a defective functional activity rather than lower protein expression. The current data support that caffeine regulates GAT-1 function and improves striatal GABA transport via A1R-cAMP-PKA signaling, specifically in SHR. These results reinforce that caffeine may have therapeutic use in disorders where the GABA transport system is impaired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A1R:

Adenosine A1 receptor

A2AR:

Adenosine A2A receptor

ADHD:

Attention-deficit/hyperactivity disorder

BSA:

Bovine serum albumin

Caf:

Caffeine

cAMP:

Cyclic adenosine 3″,5″-monophosphate

CHA:

(2R,3R,4S,5R)-2-[6-(cyclopentylamino)purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol

CNS:

Central nervous system

DMEM/F12:

Dulbecco’s modified Eagle’s medium/nutrient mixture F-12

ECL kit:

Electrochemiluminescence kit

GABA:

γ-Aminobutyric acid

GAT:

GABA transporter

H-89:

 N-[2-(P-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide dihydrochloride

HRP:

Horseradish peroxidase

NO-711:

1-[2-[[(Diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3 pyridinecarboxylic acid hydrochloride

PAGE:

Polyacrylamide gel electrophoresis

PKA:

Protein kinase A

PVDF:

Polyvinylidene fluoride

Ro 201,724:

4-(3-Butoxy-4-methoxybenzyl)imidazolidin-2-one)

SHR:

Spontaneously Hypertensive Rats

TCA:

Trichloroacetic acid

TBS-T:

Tris-buffered saline with Tween 20

References

  • Adriani W, Laviola G (2004) Windows of vulnerability to psychopathology and therapeutic strategy in the adolescent rodent model. Behav Pharmacol 15:341–352

    Article  CAS  PubMed  Google Scholar 

  • Augood SJ, Herbison AE, Emson PC (1995) Localization of GAT-1 GABA transporter mRNA in rat striatum: cellular coexpression with GAD67 mRNA, GAD67 immunoreactivity, and parvalbumin mRNA. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 15:865–874

    Article  CAS  Google Scholar 

  • Beaulieu JM, Del’guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR (2011) Beyond cAMP: the regulation of Akt and GSK3 by dopamine receptors. Front Mol Neurosci 4:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Bode C, Richter F, Sprote C, Brigadski T, Bauer A, Fietz S, Fritschy JM, Richter A (2017) Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol 287:44–53

    Article  CAS  PubMed  Google Scholar 

  • Borges-Martins VPP, Ferreira DDP, Souto AC, Oliveira Neto JG, Pereira-Figueiredo D, da Costa Calaza K, de Jesus Oliveira K, Manhaes AC, de Melo Reis RA, Kubrusly RCC (2019) Caffeine regulates GABA transport via A1R blockade and cAMP signaling. Neurochem Int 131:104550

  • Borgkvist A, Fisone G (2007) Psychoactive drugs and regulation of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons. Neurosci Biobehav Rev 31:79–88

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Carey MP, Diewald LM, Esposito FJ, Pellicano MP, Gironi Carnevale UA, Sergeant JA, Papa M, Sadile AG (1998) Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res 94:173–185

    Article  CAS  PubMed  Google Scholar 

  • Clark JA, Deutch AY, Gallipoli PZ, Amara SG (1992) Functional expression and CNS distribution of a beta-alanine-sensitive neuronal GABA transporter. Neuron 9:337–348

    Article  CAS  PubMed  Google Scholar 

  • Cristovao-Ferreira S, Vaz SH, Ribeiro JA, Sebastiao AM (2009) Adenosine A2A receptors enhance GABA transport into nerve terminals by restraining PKC inhibition of GAT-1. J Neurochem 109:336–347

    Article  CAS  PubMed  Google Scholar 

  • Davies LP, Hambley JW, Johnston GA (1987) Reduced adenosine deaminase activity in the CNS of spontaneously-hypertensive rats. Neurochem Int 10:533–536

    Article  CAS  PubMed  Google Scholar 

  • De Bruin NM, Kiliaan AJ, De Wilde MC, Broersen LM (2003) Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol Learn Mem 80:63–79

    Article  PubMed  Google Scholar 

  • de Freitas AP, Ferreira DD, Fernandes A, Martins RS, Borges-Martins VP, Sathler MF, Dos-Santos-Pereira M, Paes-de-Carvalho R, Giestal-de-Araujo E, de Melo Reis RA, Kubrusly RC (2016) Caffeine alters glutamate-aspartate transporter function and expression in rat retina. Neuroscience 337:285–294

    Article  PubMed  Google Scholar 

  • De Leonibus E, Oliverio A, Mele A (2005) A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learn Mem 12:491–503

    Article  PubMed  PubMed Central  Google Scholar 

  • de Mello MC, Ventura AL, Paes de Carvalho R, Klein WL, de Mello FG (1982) Regulation of dopamine- and adenosine-dependent adenylate cyclase systems of chicken embryo retina cells in culture. Proc Natl Acad Sci USA 79:5708–5712

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimatelis JJ, Hsieh JH, Sterley TL, Marais L, Womersley JS, Vlok M, Russell VA (2015) Impaired energy metabolism and disturbed dopamine and glutamate signalling in the striatum and prefrontal cortex of the spontaneously hypertensive rat model of attention-deficit hyperactivity disorder. J Mol Neurosci 56:696–707

    Article  CAS  PubMed  Google Scholar 

  • dos Santos Pereira M, Sathler MF, Valli Tda R, Marques RS, Ventura AL, Peccinalli NR, Fraga MC, Manhaes AC,  Kubrusly R (2015) Long withdrawal of methylphenidate induces a differential response of the dopaminergic system and increases sensitivity to cocaine in the prefrontal cortex of spontaneously hypertensive rats. PLoS One 10:e0141249

  • Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res Mol Brain Res 33:7–21

    Article  CAS  PubMed  Google Scholar 

  • Ferre S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  CAS  PubMed  Google Scholar 

  • Ferre S, Ciruela F (2019) Functional and neuroprotective role of striatal adenosine A2A receptor heterotetramers. J Caffeine Adenosine Res 9:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira DD, Stutz B, de Mello FG, Reis RA, Kubrusly RC (2014) Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors. Neuroscience 281:208–215

    Article  CAS  PubMed  Google Scholar 

  • Fickova M, Dahmen N, Fehr C, Hiemke C (1999) Quantitation of GABA transporter 3 (GAT3) mRNA in rat brain by competitive RT-PCR. Brain Res Brain Res Protoc 4:341–350

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    CAS  PubMed  Google Scholar 

  • Fredholm BB, Svenningsson P (2003) Adenosine-dopamine interactions: development of a concept and some comments on therapeutic possibilities. Neurology 61:S5-9

    Article  CAS  PubMed  Google Scholar 

  • Galvan A, Villalba RM, West SM, Maidment NT, Ackerson LC, Smith Y, Wichmann T (2005) GABAergic modulation of the activity of globus pallidus neurons in primates: in vivo analysis of the functions of GABA receptors and GABA transporters. J Neurophysiol 94:990–1000

    Article  CAS  PubMed  Google Scholar 

  • Goncalves N, Simoes AT, Prediger RD, Hirai H, Cunha RA, Pereira de Almeida L (2017) Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Ann Neurol 81:407–418

    Article  CAS  PubMed  Google Scholar 

  • Gong N, Li Y, Cai GQ, Niu RF, Fang Q, Wu K, Chen Z, Lin LN, Xu L, Fei J, Xu TL (2009) GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 29:15836–15845

    Article  CAS  Google Scholar 

  • Gonzalez-Burgos G, Hashimoto T, Lewis DA (2010) Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 12:335–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez B, Paz F, Floran L, Aceves J, Erlij D, Floran B (2006) Adenosine A2A receptor stimulation decreases GAT-1-mediated GABA uptake in the globus pallidus of the rat. Neuropharmacology 51:154–159

    Article  CAS  PubMed  Google Scholar 

  • Ha S, Lee H, Choi Y, Kang H, Jeon SJ, Ryu JH, Kim HJ, Cheong JH, Lim S, Kim BN, Lee DS (2020) Maturational delay and asymmetric information flow of brain connectivity in SHR model of ADHD revealed by topological analysis of metabolic networks. Sci Rep 10:3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illes P, Rickmann H, Brod I, Bucher B, Stoclet JC (1989) Subsensitivity of presynaptic adenosine A1-receptors in caudal arteries of spontaneously hypertensive rats. Eur J Pharmacol 174:237–251

    Article  CAS  PubMed  Google Scholar 

  • Jin XT, Galvan A, Wichmann T, Smith Y (2011a) Localization and function of GABA transporters GAT-1 and GAT-3 in the basal ganglia. Front Syst Neurosci 5:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin XT, Pare JF, Smith Y (2011b) Differential localization and function of GABA transporters, GAT-1 and GAT-3, in the rat globus pallidus. Eur J Neurosci 33:1504–1518

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamikawa Y, Cline WH Jr, Su C (1980) Diminished purinergic modulation of the vascular adrenergic neurotransmission in spontaneously hypertensive rats. Eur J Pharmacol 66:347–353

    Article  CAS  PubMed  Google Scholar 

  • Kantak KM, Singh T, Kerstetter KA, Dembro KA, Mutebi MM, Harvey RC, Deschepper CF, Dwoskin LP (2008) Advancing the spontaneous hypertensive rat model of attention deficit/hyperactivity disorder. Behav Neurosci 122:340–357

    Article  CAS  PubMed  Google Scholar 

  • Kase H (2001) New aspects of physiological and pathophysiological functions of adenosine A2A receptor in basal ganglia. Biosci Biotechnol Biochem 65:1447–1457

    Article  CAS  PubMed  Google Scholar 

  • Kehr J, Yoshitake T, Ichinose F, Yoshitake S, Kiss B, Gyertyan I, Adham N (2018) Effects of cariprazine on extracellular levels of glutamate, GABA, dopamine, noradrenaline and serotonin in the medial prefrontal cortex in the rat phencyclidine model of schizophrenia studied by microdialysis and simultaneous recordings of locomotor activity. Psychopharmacology 235:1593–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney GA (2005) GAT-3 transporters regulate inhibition in the neocortex. J Neurophysiol 94:4533–4537

    Article  CAS  PubMed  Google Scholar 

  • Kirmse K, Kirischuk S, Grantyn R (2009) Role of GABA transporter 3 in GABAergic synaptic transmission at striatal output neurons. Synapse 63:921–929

    Article  CAS  PubMed  Google Scholar 

  • Kubrusly RC, de Mello MC, de Mello FG (1998) Aspartate as a selective NMDA receptor agonist in cultured cells from the avian retina. Neurochem Int 32:47–52

    Article  CAS  PubMed  Google Scholar 

  • Leffa DT, Ferreira SG, Machado NJ, Souza CM, Rosa FD, de Carvalho C, Kincheski GC, Takahashi RN, Porciuncula LO, Souza DO, Cunha RA, Pandolfo P (2019) Caffeine and cannabinoid receptors modulate impulsive behavior in an animal model of attentional deficit and hyperactivity disorder. Eur J Neurosci 49:1673–1683

    Article  PubMed  Google Scholar 

  • Lindskog M, Svenningsson P, Pozzi L, Kim Y, Fienberg AA, Bibb JA, Fredholm BB, Nairn AC, Greengard P, Fisone G (2002) Involvement of DARPP-32 phosphorylation in the stimulant action of caffeine. Nature 418:774–778

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Martins RS, de Freitas IG, Sathler MF, Martins V, Schitine CS, da Silva Sampaio L, Freitas HR, Manhaes AC, Dos Santos Pereira M, de Melo Reis RA, Kubrusly RCC (2018) Beta-adrenergic receptor activation increases GABA uptake in adolescent mice frontal cortex: Modulation by cannabinoid receptor agonist WIN55,212–2. Neurochem Int 120:182–190

    Article  CAS  PubMed  Google Scholar 

  • Martins RS, Rombo DM, Goncalves-Ribeiro J, Meneses C, Borges-Martins VPP, Ribeiro JA, Vaz SH, Kubrusly RCC, Sebastiao AM (2020) Caffeine has a dual influence on NMDA receptor-mediated glutamatergic transmission at the hippocampus. Purinergic Signal

  • Matias A, Zimmer FJ, Lorenzen A, Keil R, Schwabe U (1993) Affinity of central adenosine A1 receptors is decreased in spontaneously hypertensive rats. Eur J Pharmacol 244:223–230

    Article  CAS  PubMed  Google Scholar 

  • Mederos S, Gonzalez-Arias C, Perea G (2018) Astrocyte-neuron networks: a multilane highway of signaling for homeostatic brain function. Front Synaptic Neurosci 10:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori A, Shindou T, Ichimura M, Nonaka H, Kase H (1996) The role of adenosine A2a receptors in regulating GABAergic synaptic transmission in striatal medium spiny neurons. The Journal of Neuroscience : the Official Journal of the Society for Neuroscience 16:605–611

    Article  CAS  Google Scholar 

  • Moser MB, Moser EI, Wultz B, Sagvolden T (1988) Component analyses differentiate between exploratory behaviour of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand J Psychol 29:200–206

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128

    Article  CAS  PubMed  Google Scholar 

  • Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27:282–293

    Article  CAS  Google Scholar 

  • Pamplona FA, Pandolfo P, Savoldi R, Prediger RD, Takahashi RN (2009) Environmental enrichment improves cognitive deficits in spontaneously hypertensive rats (SHR): relevance for attention deficit/hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry 33:1153–1160

    Article  PubMed  Google Scholar 

  • Pandolfo P, Machado NJ, Kofalvi A, Takahashi RN, Cunha RA (2013) Caffeine regulates frontocorticostriatal dopamine transporter density and improves attention and cognitive deficits in an animal model of attention deficit hyperactivity disorder. Eur Neuropsychopharmacol 23:317–328

    Article  CAS  PubMed  Google Scholar 

  • Papa M, Diewald L, Carey MP, Esposito FJ, Gironi Carnevale UA, Sadile AG (2002) A rostro-caudal dissociation in the dorsal and ventral striatum of the juvenile SHR suggests an anterior hypo- and a posterior hyperfunctioning mesocorticolimbic system. Behav Brain Res 130:171–179

    Article  CAS  PubMed  Google Scholar 

  • Pires VA, Pamplona FA, Pandolfo P, Fernandes D, Prediger RD, Takahashi RN (2009) Adenosine receptor antagonists improve short-term object-recognition ability of spontaneously hypertensive rats: a rodent model of attention-deficit hyperactivity disorder. Behav Pharmacol 20:134–145

    Article  CAS  PubMed  Google Scholar 

  • Pires VA, Pamplona FA, Pandolfo P, Prediger RD, Takahashi RN (2010) Chronic caffeine treatment during prepubertal period confers long-term cognitive benefits in adult spontaneously hypertensive rats (SHR), an animal model of attention deficit hyperactivity disorder (ADHD). Behav Brain Res 215:39–44

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD (2010) Effects of caffeine in Parkinson’s disease: from neuroprotection to the management of motor and non-motor symptoms. J Alzheimers Dis 20(Suppl 1):S205-220

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, Fernandes D, Takahashi RN (2005a) Blockade of adenosine A2A receptors reverses short-term social memory impairments in spontaneously hypertensive rats. Behav Brain Res 159:197–205

    Article  CAS  PubMed  Google Scholar 

  • Prediger RD, Pamplona FA, Fernandes D, Takahashi RN (2005b) Caffeine improves spatial learning deficits in an animal model of attention deficit hyperactivity disorder (ADHD) – the spontaneously hypertensive rat (SHR). Int J Neuropsychopharmacol 8:583–594

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sebastiao AM (2010) Caffeine and adenosine. J Alzheimers Dis 20(Suppl 1):S3-15

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro JA, Sebastião AM, de Mendonça A (2002) Adenosine receptors in the nervous system: pathophysiological implications. Prog Neurobiol 68:377–392

    Article  CAS  PubMed  Google Scholar 

  • Roberts BM, Doig NM, Brimblecombe KR, Lopes EF, Siddorn RE, Threlfell S, Connor-Robson N, Bengoa-Vergniory N, Pasternack N, Wade-Martins R, Magill PJ, Cragg SJ (2020) GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nat Commun 11:4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Pereira C, Arribas SM, Fresco P, Gonzalez MC, Goncalves J, Diniz C (2013) Impaired inhibitory function of presynaptic A1-adenosine receptors in SHR mesenteric arteries. J Pharmacol Sci 122:59–70

    Article  CAS  PubMed  Google Scholar 

  • Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell V, de Villiers A, Sagvolden T, Lamm M, Taljaard J (1998) Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res 94:163–171

    Article  CAS  PubMed  Google Scholar 

  • Russell VA (2002) Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder–the spontaneously hypertensive rat. Behav Brain Res 130:191–196

    Article  CAS  PubMed  Google Scholar 

  • Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci, Chapter 9(Unit9):35

    Google Scholar 

  • Sagvolden T (2000) Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24:31–39

    Article  CAS  PubMed  Google Scholar 

  • Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M (2005) Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiat 57:1239–1247

    Article  PubMed  Google Scholar 

  • Sagvolden T, Xu T (2008) l-Amphetamine improves poor sustained attention while d-amphetamine reduces overactivity and impulsiveness as well as improves sustained attention in an animal model of Attention-Deficit/Hyperactivity Disorder (ADHD). Behav Brain Funct 4:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Sathler MF, Stutz B, Martins RS, Dos Santos Pereira M, Pecinalli NR, Santos LE, Taveira-da-Silva R, Lowe J, de Freitas IG, de Melo Reis RA, Manhaes AC, Kubrusly RC (2016) Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms. Neuroscience 329:326–336

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A (2014) Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6:484–490

    Article  CAS  PubMed  Google Scholar 

  • Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4:624–630

    PubMed  PubMed Central  Google Scholar 

  • Silberberg G, Bolam JP (2015) Local and afferent synaptic pathways in the striatal microcircuitry. Curr Opin Neurobiol 33:182–187

    Article  CAS  PubMed  Google Scholar 

  • Sipila ST, Voipio J, Kaila K (2007) GAT-1 acts to limit a tonic GABA(A) current in rat CA3 pyramidal neurons at birth. Eur J Neurosci 25:717–722

    Article  PubMed  Google Scholar 

  • Verkhratsky A, Steardo L, Parpura V, Montana V (2016) Translational potential of astrocytes in brain disorders. Prog Neurobiol 144:188–205

    Article  CAS  PubMed  Google Scholar 

  • Wang XS, Ong WY (1999) A light and electron microscopic study of GAT-1 in the monkey basal ganglia. J Neurocytol 28:1053–1061

    Article  CAS  PubMed  Google Scholar 

  • Wiersema JR, van der Meere JJ, Roeyers H (2005) State regulation and response inhibition in children with ADHD and children with early- and continuously treated phenylketonuria: an event-related potential comparison. J Inherit Metab Dis 28:831–843

    Article  CAS  PubMed  Google Scholar 

  • Williams M, Jarvis MF (1988) Adenosine antagonists as potential therapeutic agents. Pharmacol Biochem Behav 29:433–441

    Article  CAS  PubMed  Google Scholar 

  • Yasumi M, Sato K, Shimada S, Nishimura M, Tohyama M (1997) Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Brain Res Mol Brain Res 44:205–218

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Taylor AMW, Nagai J, Golshani P, Evans CJ, Coppola G, Khakh BS (2018) Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 99(1170–1187):e1179

  • Zhai S, Shen W, Graves SM, Surmeier DJ (2019) Dopaminergic modulation of striatal function and Parkinson’s disease. J Neural Transm 126:411–422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Fabricio and Redinei for animal care.

Funding

This research was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Instituto Nacional de Neurociência Translacional (INNT-INCT), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; 2017/14207–7), and Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

RCCK: conceptualization, investigation, funding acquisition, project administration, supervision, validation, review and editing. TRV, RSM, PM, VPPBM: investigation, experimental research and formal analysis. DDPF, MFS: MFS: conceptualization, experimental research, review and editing. RAMR, GCF, ACM: conceptualization, review and editing. MSP: conceptualization, investigation, formal analysis, supervision, validation, original draft preparation, review and editing.

Corresponding author

Correspondence to Maurício dos Santos Pereira.

Ethics declarations

Ethics Approval

All experiments were carried out under institutional approval of the Animal Care and Use Committee of Fluminense Federal University (CEUA/865/2016), following Brazilian Law no. 11.794/2008 and the Guide for the Care and Use of Laboratory Animals (National Institutes of Health). All efforts were made to minimize the number and the suffering of animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubrusly, R.C.C., da Rosa Valli, T., Ferreira, M.N.M.R. et al. Caffeine Improves GABA Transport in the Striatum of Spontaneously Hypertensive Rats (SHR). Neurotox Res 39, 1946–1958 (2021). https://doi.org/10.1007/s12640-021-00423-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00423-0

Keywords

Navigation