Skip to main content
Log in

Naringin Ameliorates Haloperidol-Induced Neurotoxicity and Orofacial Dyskinesia in a Rat Model of Human Tardive Dyskinesia

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Animal models of haloperidol (HAL)-induced neurotoxicity and orofacial dyskinesia (OD) have long been used to study human tardive dyskinesia (TD). Similar to patients with TD, these models show strong pathophysiological characteristics such as striatal oxidative stress and neural cytoarchitecture alteration. Naringin (NAR), a bioflavonoid commonly found in citrus fruits, has potent antioxidative, anti-inflammatory, antiapoptotic, and neuroprotective properties. The present study evaluated the potential protective effects of NAR against HAL-induced OD in rats and the neuroprotective mechanisms underlying these effects. HAL treatment (1 mg/kg i.p. for 21 successive days) induced OD development, characterized by increased vacuous chewing movement (VCM) and tongue protrusion (TP), which were recorded on the 7th, 14th, and 21st day of drug treatment. NAR (30, 100, and 300 mg/kg) was administered orally 60 min before HAL injection for 21 successive days. On the 21st day, after behavioral testing, the rats were sacrificed, and the nitrosative and oxidative status, antioxidation power, neurotransmitter levels, neuroinflammation, and apoptotic markers in the striatum were measured. HAL induced OD development, with significant increases in the frequency of VCM and TP. NAR treatment (100 and 300 mg/kg) prevented HAL-induced OD significantly. Additionally, NAR treatment reduced the HAL-induced nitric oxide and lipid peroxide production, increased the antioxidation power and neurotransmitter levels in the striatum, and significantly reduced the levels of neuroinflammatory and apoptotic markers. Our results first demonstrate the neuroprotective effects of NAR against HAL-induced OD, suggesting that NAR may help in delaying or treating human TD in clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C:

Control group

H:

HAL treatment group

HAL:

Haloperidol

NAR:

Naringin

N30:

NAR 30 mg/kg + normal saline treatment group

N100:

NAR 100 mg/kg + normal saline treatment group

N300:

NAR 300 mg/kg + normal saline treatment group

N30 + H:

NAR 30 mg/kg + HAL 1 mg/kg treatment group

N100 + H:

NAR 100 mg/kg + HAL 1 mg/kg treatment group

N300 + H:

NAR 300 mg/kg + HAL 1 mg/kg treatment group

References

  • Ahmed S, Khan H, Aschner M, Hasan MM, Hassan STS (2019) Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol 132:110646

    Article  CAS  PubMed  Google Scholar 

  • Alam MA, Kauter K, Brown L (2013) Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients 27:637–650

    Article  Google Scholar 

  • Aroui S, Aouey B, Chtourou Y, Meunier AC, Fetoui H, Kenani A (2016) Naringin suppresses cell metastasis and the expression of matrix metalloproteinases (MMP-2 and MMP-9) via the inhibition of ERK-P38-JNK signaling pathway in human glioblastoma. Chem Biol Interact 244:195–203

    Article  CAS  PubMed  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    Article  CAS  Google Scholar 

  • Ben-Azu B, Nwoke EE, Aderibigbe AO, Omogbiya IA, Ajayi AM, Olonode ET, Umukoro S, Iwalewa EO (2019) Possible neuroprotective mechanisms of action involved in the neurobehavioral property of naringin in mice. Biomed Pharmacother 109:536–546

    Article  CAS  Google Scholar 

  • Bharti S, Rani N, Krishnamurthy B, Arya DS (2014) Preclinical evidence for the pharmacological actions of naringin: a review. Planta Med 80:437–451

    Article  CAS  PubMed  Google Scholar 

  • Bilska A, Dubiel M, Sokolowska-Jezewicz M, Lorenc-Koci E, Wlodek L (2007) Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience 146:1758–1771

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi M, Boparai RK (2012) An animal model to study the molecular basis of tardive dyskinesia. Methods Mol Biol 829:193–201

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2008a) Activation of striatal inflammatory mediators and caspase-3 is central to haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 590:241–245

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2008b) Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Pharmacol Biochem Behav 88:511–522

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2008c) Protective effect of L-type calcium channel blockers against haloperidol-induced orofacial dyskinesia: a behavioural, biochemical and neurochemical study. Neurochem Res 33:1869–1880

    Article  CAS  PubMed  Google Scholar 

  • Bishnoi M, Chopra K, Kulkarni SK (2009) Co-administration of nitric oxide (NO) donors prevents haloperidol-induced orofacial dyskinesia, oxidative damage and change in striatal dopamine levels. Pharmacol Biochem Behav 91:423–429

    Article  CAS  PubMed  Google Scholar 

  • Budantsev A, Kisliuk OS, Shul'govskii VV, Rykunov DS, Iarkov AV (1993) [The brain in stereotaxic coordinates (a textbook for colleges)]. Zh Vyssh Nerv Deiat Im I P Pavlova 43, 1045–1051

  • Burger ME, Fachinetto R, Zeni G, Rocha JBT (2005) Ebselen attenuates haloperidol-induced orofacial dyskinesia and oxidative stress in rat brain. Pharmacol Biochem Behav 81:608–615

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775

    Article  CAS  PubMed  Google Scholar 

  • Chen CN, Chang KC, Wang MH, Tseng HC, Soung HS (2018) Protective effect of L-theanine on haloperidol-induced orofacial. Chinese J Physiol 61:35–41

    Article  CAS  Google Scholar 

  • Chen R, Qi QL, Wang MT, Li QY (2016) Therapeutic potential of naringin: an overview. Pharm Biol 54:3203–3210

    Article  CAS  PubMed  Google Scholar 

  • Cho CH, Lee HJ (2013) Oxidative stress and tardive dyskinesia: pharmacogenetic evidence. Prog Neuropsychopharmacol Biol Psychiatry 46:207–213

    Article  CAS  PubMed  Google Scholar 

  • Choe SC, Kim HS, Jeong TS, Bok SH, Park YB (2001) Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 38:947–955

    Article  CAS  PubMed  Google Scholar 

  • Correll CU, Kane JM, Citrome LL (2017) Epidemiology, prevention, and assessment of tardive dyskinesia and advances in treatment. J Clin Psychiatry 78:1136–1147

    Article  PubMed  Google Scholar 

  • Cui J, Wang G, Kandhare AD, Mukherjee-Kandhare AA, Bodhankar SL (2018) Neuroprotective effect of naringin, a flavone glycoside in quinolinic acid-induced neurotoxicity: Possible role of PPAR-gamma, Bax/Bcl-2, and caspase-3. Food Chem Toxicol 121:95–108

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Jamwal S, Deshmukh R, Kumar P (2016) Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: possible neurotransmitters and neuroinflammation modulation. Eur J Pharmacol 771:229–235

    Article  CAS  PubMed  Google Scholar 

  • Dhingra D, Goswami S, Gahalain N (2018) Protective effect of hesperetin against haloperidol-induced orofacial dyskinesia and catalepsy in rats. Nutr Neurosci 21:667–675

    Article  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • George MY, Menze ET, Esmat A, Tadros MG, El-Demerdash E (2020) Potential therapeutic antipsychotic effects of Naringin against ketamine-induced deficits in rats: involvement of Akt/GSK-3β and Wnt/β-catenin signaling pathways. Life Sci 249:117535

    Article  CAS  PubMed  Google Scholar 

  • Golechha M, Sarangal V, Bhatia J, Chaudhry U, Saluja D, Arya DS (2014) Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: possible mechanisms of neuroprotection. Epilepsy Behav 41:98–102

    Article  PubMed  Google Scholar 

  • Guzen FP, Cavalcanti J, Cavalcanti D, de Sales LGP, da Silva MSM, da Silva ANA, Pinheiro FI, de Araujo DP (2019) Haloperidol-induced preclinical tardive dyskinesia model in rats. Curr Protoc Neurosci 88:e68

    Article  PubMed  Google Scholar 

  • Hashimoto M, Tanabe Y, Fujii Y, Kikuta T, Shibata H, Shido O (2005) Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. J Nutr 135:549–555

    Article  CAS  PubMed  Google Scholar 

  • Ikemura M, Sasaki Y, GiddingsYamamoto, JC (2012) Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats. J Phytother Res 26:1272–1277

    Article  CAS  Google Scholar 

  • Kamyar M, Razavi BM, Hasani FV, Mehri S, Foroutanfar A, Hosseinzadeh H (2016) Crocin prevents haloperidol-induced orofacial dyskinesia: possible an antioxidant mechanism. Iran J Basic Med Sci 19:1070–1079

    PubMed  PubMed Central  Google Scholar 

  • Kawaguchi K, Maruyama H, Hasunuma R, Kumazawa Y (2011) Suppression of inflammatory responses after onset of collagen-induced arthritis in mice by oral administration of the Citrus flavanone naringin rheumatological disorders. Immunopharmacol Immunotoxicol 33:723–729

    Article  CAS  PubMed  Google Scholar 

  • Kola PK, Akula A, NissankaraRao LS, Danduga R (2017) Protective effect of naringin on pentylenetetrazole (PTZ)-induced kindling; possible mechanisms of antikindling, memory improvement, and neuroprotection. Epilepsy Behav 75:114–126

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein Measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oladapo OM, Ben-Azu B, Ajayi AM, Emokpae O, Eneni AO, Omogbiya IA, Iwalewa EO (2020) Naringin confers protection against psychosocial defeat stress-induced neurobehavioral deficits in mice: involvement of glutamic acid decarboxylase isoform-67, oxido-nitrergic stress, and neuroinflammatory mechanisms. J Mol Neurosci Online ahead of print

  • Parmar HS, Jain P, Chauhan DS, Bhinchar MK, Munjal V, Yusuf M, Choube K, Tawani A, Tiwari V, Manivannan E, Kumar A (2012) DPP-IV inhibitory potential of naringin: an in silico, in vitro and in vivo study. Diabetes Res Clin Pract 97:105–111

    Article  CAS  PubMed  Google Scholar 

  • Patel BA, Arundell M, Parker KH, Yeoman MS, O’Hare D (2005) Simple and rapid determination of serotonin and catecholamines in biological tissue using high-performance liquid chromatography with electrochemical detection. J Chromatogr B 818:269–276

    Article  CAS  Google Scholar 

  • Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, Zhou NJ, Xie J, Jiang H (2012) Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys 518:61–70

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan A, Vijayakumar N, Renuka M (2016) Naringin regulates glutamate-nitric oxide cGMP pathway in ammonium chloride induced neurotoxicity. Biomed Pharmacother 84:1717–1726

    Article  CAS  PubMed  Google Scholar 

  • Raudenska M, Gumulec J, Babula P, Stracina T, Sztalmachova M, Polanska H, Adam V, Kizek R, Novakova M, Masarik M (2013) Haloperidol cytotoxicity and its relation to oxidative stress. Mini Rev Med Chem 13:1993–1998

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva AK, Kuhad A, Chopra K (2014) Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol Biochem Behav 127:101–110

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Bansal Y, Bhandari R, Marwaha L, Singh R, Chopra K, Kuhad A (2017) Naringin reverses neurobehavioral and biochemical alterations in intracerebroventricular collagenase-induced intracerebral hemorrhage in rats. Pharmacology 100:172–187

    Article  CAS  PubMed  Google Scholar 

  • Soung HS, Wang MH, Chang KC, Chen CN, Chang Y, Yang CC, Tseng HC (2018) L-Theanine decreases orofacial dyskinesia induced by reserpine in rats. Neurotox Res 34:375–387

    Article  CAS  PubMed  Google Scholar 

  • Stegmayer K, Walther S, van Harten P (2018) Tardive dyskinesia associated with atypical antipsychotics: prevalence, mechanisms and management strategies. CNS Drugs 32:135–147

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Wang MH, Chang KC, Soung HS, Yang CC, Tseng HC (2019) Possible nitric oxide mechanism involved in the protective effect of L-theanine on haloperidol-induced orofacial dyskinesia. Chin J Physiol 62:17–26

    Article  CAS  PubMed  Google Scholar 

  • Viswanatha GL, Shylaja H, Moolemath Y (2017) The beneficial role of Naringin- a citrus bioflavonoid, against oxidative stress-induced neurobehavioral disorders and cognitive dysfunction in rodents: a systematic review and meta-analysis. Biomed Pharmacother 94:909–929

    Article  CAS  PubMed  Google Scholar 

  • Wang DM, Yang YJ, Zhang L, Zhang X, Guan FF, Zhang LF (2013) Naringin enhances CaMKII activity and improves long-term memory in a mouse model of Alzheimer’s disease. Int J Mol Sci 14:5576–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M, Yang Z, Li P, Zhang Y, Sse WC (2007) Anti-osteoporosis activity of naringin in the retinoic acid-induced osteoporosis model. Am J Chin Med 35:663–667

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Su W, Zheng Y, He Y, He Y, Rao H, Peng W, Yao H (2019) Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Front Pharmacol 10:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Yuan-Shan Branch of Taipei Veteran General Hospital (VGH-10802) and Mackay Memorial Hospital (MMH-107-90).

Author information

Authors and Affiliations

Authors

Contributions

M.-H.W. collected the data, executed the performing animal study of the experiments, and initially drafted the manuscript. C.-C.Y. and H.-C.T. contributed to the active discussion of experimental design and assisted with study conceptualization. C.-H.F. and Y.-W.L. contributed to the active performing of the animal study. M.-H.W., C.-C.Y., and H.-S.S. supervised the study, assisted with study conceptualization, and made a substantial contribution to the revision of the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Hung-Sheng Soung.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animal experiments were carried out in compliance with the National Taiwan University, College of Medicine, Institutional Animal Care and Use Committee (IACUC). The experimental protocol received prior approval by the Institutional Animal Care and Use Committee (IACUC) (No. 20180274, date of approval: 20180274).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MH., Yang, CC., Tseng, HC. et al. Naringin Ameliorates Haloperidol-Induced Neurotoxicity and Orofacial Dyskinesia in a Rat Model of Human Tardive Dyskinesia. Neurotox Res 39, 774–786 (2021). https://doi.org/10.1007/s12640-021-00333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-021-00333-1

Keywords

Navigation