Skip to main content

Advertisement

Log in

Superoxide Dismutases SOD1 and SOD2 Rescue the Toxic Effect of Dopamine-Derived Products in Human SH-SY5Y Neuroblastoma Cells

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The preferential loss of dopaminergic neurons in the substantia nigra pars compacta is one of the pathological hallmarks characterizing Parkinson’s disease. Although the pathogenesis of this disorder is not fully understood, oxidative stress plays a central role in the onset and/or progression of Parkinson’s disease and dopamine itself has been suggested to participate in the preferential neuronal degeneration through the induction of oxidative conditions. In fact, the accumulation of dopamine into the cytosol can lead to the formation of reactive oxygen species as well as highly reactive dopamine-quinones. In the present work, we first analyzed the cellular damage induced by the addition of dopamine (DA) in the culture medium of SH-SY5Y cells, discriminating whether the harmful effects were related to the generation of reactive oxygen species or to the toxicity associated to dopamine-derived quinones. Then, we tested and demonstrated the capability of the antioxidant enzymes SOD1 and SOD2 to protect cells from the noxious effects induced by DA treatment. Our results support further exploration of superoxide dismutating molecules as a therapeutic strategy against Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bisaglia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biosa, A., De Lazzari, F., Masato, A. et al. Superoxide Dismutases SOD1 and SOD2 Rescue the Toxic Effect of Dopamine-Derived Products in Human SH-SY5Y Neuroblastoma Cells. Neurotox Res 36, 746–755 (2019). https://doi.org/10.1007/s12640-019-00078-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00078-y

Keywords

Navigation