Skip to main content
Log in

Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Methamphetamine (METH), an amphetamine derivate, may increase the risk of developing Parkinson’s disease (PD). Human and animal studies have shown that METH produces persistent dopaminergic neurotoxicity in the nigrostriatal pathway, despite initial partial recovery. To determine the processes leading to early compensation, we studied the detailed morphology and distribution of tyrosine hydroxylase immunoreactive fibers (TH-ir) classified by their thickness (types I–IV) before and after METH. Applying three established neurotoxic regimens of METH: single high dose (1 × 30 mg/kg), multiple lower doses (3 × 5 mg/kg) or (3 × 10 mg/kg), we show that METH primarily damages type I fibers (the thinner ones), and to a much lesser extend types II–IV fibers including sterile axons. The striatal TH terminal partial recovery process, consisting of a progressive regrowth increases in types II, III, and IV fibers, demonstrated by co-localization of GAP-43, a sprouting marker, was observed 3 days post-METH treatment. In addition, we demonstrate the presence of growth-cone-like TH-ir structures, indicative of new terminal generation as well as improvement in motor functions after 3 days. A temporal relationship was observed between decreases in TH-expression and increases in silver staining, a marker of degeneration. Striatal regeneration was associated with an increase in astroglia and decrease in microglia expression, suggesting a possible role for the neuroimmune system in regenerative processes. Identification of regenerative compensatory mechanisms in response to neurotoxic agents could point to novel mechanisms in countering the neurotoxicity and/or enhancing the regenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A-Cu-Ag:

Amino-cupric silver

DAT:

Dopamine transporter

GAP-43:

Anti-growth associated protein-43

PB:

Phosphate buffer

PBST:

Phosphate buffer with Triton

SNpc:

Substantia nigra pars compacta

TH-ir:

Tyrosine hydroxylase immunoreactivity

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

6-OHDA:

6-Hydoxydopamine

MDMA:

3,4-Methylenedioxy-methamphetamine

METH:

Methamphetamine

References

  • Anderson PN, Campbell G, Zhang Y, Lieberman AR (1998) Cellular and molecular correlates of the regeneration of adult mammalian CNS axons into peripheral nerve grafts. Prog Brain Res 117:211–232

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Oliva I, O'Shea E, Martin ED, Colado MI, Moratalla R (2012) Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiol Dis 45:810–820

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39:1066–1080

    Article  CAS  PubMed  Google Scholar 

  • Batchelor PE, Liberatore GT, Porritt MJ, Donnan GA, Howells DW (2000) Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum. Eur J Neurosci 12:3462–3468

    Article  CAS  PubMed  Google Scholar 

  • Beltramino CA, de Olmos JS, Gallyas F, Heimer L, Záborszky L (1993) Silver staining as a tool for neurotoxic assessment. NIDA Res Monogr 136:101–126

  • Bender C, de Olmos S, Bueno A, de Olmos J, Lorenzo A (2010) Comparative analyses of the neurodegeneration induced by the non-competitive NMDA-receptor-antagonist drug MK801 in mice and rats. Neurotoxicol Teratol 32:542–550

    Article  CAS  PubMed  Google Scholar 

  • Benowitz LI, Perrone-Bizzozero NI (1991) The relationship of GAP-43 to the development and plasticity of synaptic connections. Ann N Y Acad Sci 627:58–74

    Article  CAS  PubMed  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT (1997) Dopaminergic neurons intrinsic to the primate striatum. J Neurosci 17:6761–6768

    Article  CAS  PubMed  Google Scholar 

  • Bezard E, Dovero S, Imbert C, Boraud T, Gross CE (2000) Spontaneous long-term compensatory dopaminergic sprouting in MPTP-treated mice. Synapse 38:363–368

    Article  CAS  PubMed  Google Scholar 

  • Blanchard V, Anglade P, Dziewczapolski G, Savasta M, Agid Y, Raisman-Vozari R (1996) Dopaminergic sprouting in the rat striatum after partial lesion of the substantia nigra. Brain Res 709:319–325

    Article  CAS  PubMed  Google Scholar 

  • Bowyer JF, Sarkar S, Tranter KM, Hanig JP, Miller DB, O’Callaghan JP (2016) Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair?. Journal of Neuroinflammation 13(1):1–15. https://doi.org/10.1186/s12974-016-0526-6

  • Busceti F, Biagioni F, Mastroiacovo D, Bucci P, Lenzi L, Pasquali A, Trabucco F, Nicoletti F, Fornai F (2008) High number of striatal dopaminergic neurons during early postnatal development: correlation analysis with dopaminergic fibers. J Neural Transm 115(10):1375–1383

  • Cadet JL, Brannock C, Jayanthi S, Krasnova IN (2015) Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 51:696–717

    Article  CAS  PubMed  Google Scholar 

  • Callaghan RC, Cunningham JK, Sykes J, Kish SJ (2012) Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug Alcohol Depend 120:35–40

    Article  CAS  PubMed  Google Scholar 

  • Carmena A, Granado N, Ares-Santos S, Alberquilla S, Tizabi Y, Moratalla R (2015) Methamphetamine-induced toxicity in Indusium Griseum of mice is associated with astro- and microgliosis. Neurotox Res 27:209–216

    Article  CAS  PubMed  Google Scholar 

  • Chen JF, Moratalla R, Yu L, Martín AB, Xu K, Bastia E, Hackett E, Alberti I, Schwarzschild MA (2003) Inactivation of adenosine A2A receptors selectively attenuates amphetamine-induced behavioral sensitization. Neuropsychopharmacology 28:1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Cheng HW, Jiang T, Brown SA, Pasinetti GM, Finch CE, McNeill TH (1994) Response of striatal astrocytes to neuronal deafferentation: an immunocytochemical and ultrastructural study. Neuroscience 62:425–439

    Article  CAS  PubMed  Google Scholar 

  • Chou YH, Huang WS, Su TP, Lu RB, Wan FJ, Fu YK (2007) Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: a SPECT study. Eur Neuropsychopharmacol 17:46–52

    Article  CAS  PubMed  Google Scholar 

  • Cossette M, Lévesque D, Parent A (2005) Neurochemical characterization of dopaminergic neurons in human striatum. Parkinsonims Relat Disord 11:277–286

  • Curtin K, Fleckenstein AE, Robison RJ, Crookston MJ, Smith KR, Hanson GR (2015) Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: a population-based assessment. Drug Alcohol Depend 146:30–38

    Article  CAS  PubMed  Google Scholar 

  • Darmopil S, Muñetón-Gómez VC, de Ceballos ML, Bernson M, Moratalla R (2008) Tyrosine hydroxylase cells appearing in the mouse striatum after dopamine denervation are likely to be projection neurones regulated by L-DOPA. Eur J Neurosci 27:580–592

    Article  PubMed  Google Scholar 

  • De Olmos S, Bender C, De Olmos JS, Lorenzo A (2009) Neurodegeneration and prolonged immediate early gene expression throughout cortical areas of the rat brain following acute administration of dizocilpine. Neuroscience 164:1347–1359

    Article  CAS  PubMed  Google Scholar 

  • Downey LA, Loftis JM (2014) Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine. Eur J Pharmacol 727:125–129

    Article  CAS  PubMed  Google Scholar 

  • Espadas I, Darmopil S, Vergaño-Vera E, Ortiz O, Oliva I, Vicario-Abejón C, Martín ED, Moratalla R (2012) L-DOPA-induced increase in TH-immunoreactive striatal neurons in parkinsonian mice: insights into regulation and function. Neurobiol Dis 48:271–281

    Article  CAS  PubMed  Google Scholar 

  • Ferrucci M, Giorgi FS, Bartalucci A, Busceti CL, Fornai F (2013) The effects of locus coeruleus and norepinephrine in methamphetamine toxicity. Curr Neuropharmacol 11:80–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein DI, Stanic D, Parish CL, Tomas D, Dickson K, Horne MK (2000) Axonal sprouting following lesions of the rat substantia nigra. Neuroscience 97:99–112

    Article  CAS  PubMed  Google Scholar 

  • González-Aparicio R, Moratalla R (2014) Oleoylethanolamide reduces L-DOPA-induced dyskinesia via TRPV1 receptor in a mouse model of Parkinson’s disease. Neurobiol Dis 62:416–425

    Article  CAS  PubMed  Google Scholar 

  • Granado N, O'Shea E, Bove J, Vila M, Colado MI, Moratalla R (2008a) Persistent MDMA-induced dopaminergic neurotoxicity in the striatum and substantia nigra of mice. J Neurochem 107:1102–1112

    CAS  PubMed  Google Scholar 

  • Granado N, Escobedo I, O'Shea E, Colado I, Moratalla R (2008b) Early loss of dopaminergic terminals in striosomes after MDMA administration to mice. Synapse 62:80–84

    Article  CAS  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, O'Shea E, Vicario-Abejón C, Colado MI, Moratalla R (2010) Selective vulnerability in striosomes and in the nigrostriatal dopaminergic pathway after methamphetamine administration: early loss of TH in striosomes after methamphetamine. Neurotox Res 18:48–58

    Article  PubMed  Google Scholar 

  • Granado N, Ares-Santos S, Oliva I, O'Shea E, Martin ED, Colado MI et al (2011a) Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiol Dis 42:391–403

    Article  CAS  PubMed  Google Scholar 

  • Granado N, Lastres-Becker I, Ares-Santos S, Oliva I, Martin E, Cuadrado A, Moratalla R (2011b) Nrf2 deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia 59:1850–1863

    Article  PubMed  Google Scholar 

  • Harvey DC, Laćan G, Melegan WP (2000) Regional heterogeneity of dopaminergic deficits in vervet monkey striatum and substantia nigra after methamphetamine exposure. Exp Brain Res 133:349–358

    Article  CAS  PubMed  Google Scholar 

  • Henley JM, Moratallo R, Hunt SP, Barnard EA (1989) Localization and quantitative autoradiography of glutamatergic ligand binding sites in chick brain. Eur J Neurosci 1:516–523

    Article  PubMed  Google Scholar 

  • Huot P, Parent A (2007) Dopaminergic neurons intrinsic to the striatum. J Neurochem 101:1441–1447

    Article  CAS  PubMed  Google Scholar 

  • Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM (2004) Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res 76:539–550

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, McCoy MT, Chen B, Britt JP, Kourrich S, Yau HJ, Ladenheim B, Krasnova IN, Bonci A, Cadet JL (2014) Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol Psychiatry 76:47–56

    Article  CAS  PubMed  Google Scholar 

  • Karperien A, Ahammer H, Jelinek HF (2013) Quantitating the subtleties of microglial morphology with fractal analysis. Front Cell Neurosci 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Chen X, Oo TF, Kareva T, Yarygina O, Wang C, During M, Kholodilov N, Burke RE (2011) Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration. Ann Neurol 70:110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SR, Kareva T, Yarygina O, Kholodilov N, Burke RE (2012) Aav transduction of dopamine neurons with constitutively active Rheb protects from neurodegeneration and mediates axon regrowth. Mol Ther 20:275–286

    Article  CAS  PubMed  Google Scholar 

  • Kousik SM, Carvey PM, Napier TC (2014) Methamphetamine self-administration results in persistent dopaminergic pathology: implications for Parkinson’s disease risk and reward-seeking. Eur J Neurosci 40:2707–2714

    Article  PubMed  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Gajavelli S, Spurlock MS, Andreoni C, de Rivero Vaccari JP, Bullock MR, Keane RW, Dietrich WD (2018) Microglial inflammasome activation in penetrating ballistic-like brain injury. J Neurotrauma. https://doi.org/10.1089/neu.2017.5530

  • McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA (2008) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100

    Article  CAS  PubMed  Google Scholar 

  • Melega WP, Raleigh MJ, Stout DB, Lacan G, Huang SC, Phelps ME (1997) Recovery of striatal dopamine function after acute amphetamine- and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res 766:113–120

    Article  CAS  PubMed  Google Scholar 

  • Mendieta L, Granado N, Aguilera J, Tizabi Y, Moratalla R (2016) Fragment C domain of tetanus toxin mitigates methamphetamine neurotoxicity and its motor consequences in mice. Int J Neuropsychopharmacol 19:1–11

    Article  CAS  Google Scholar 

  • O'Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    CAS  PubMed  Google Scholar 

  • Padmanabhan S, Burke RE (2018) Induction of axon growth in the adult brain: a new approach to restoration in Parkinson’s disease. Mov Disord 33:62–70

    Article  PubMed  Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press, Humphrey Milford

    Google Scholar 

  • Ricaurte GA, McCann UD (1992) Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. Ann N Y Acad Sci 648:371–382

    Article  CAS  PubMed  Google Scholar 

  • Ricaurte GA, Seiden LS, Schuster CR (1984) Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain Res 303:359–364

    Article  CAS  PubMed  Google Scholar 

  • Ries V, Henchcliffe C, Kareva T, Rzhetskaya M, Bland R, During MJ, Kholodilov N, Burke RE (2006) Oncoprotein Akt/Pkb: trophic effects in murine models of Parkinson’s disease. Proc Natl Acad Sci U S A 103:18757–18762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Solís O, Espadas I, Del-Bel EA, Moratalla R (2015) Nitric oxide synthase inhibition decreases l-DOPA-induced dyskinesia and the expression of striatal molecular markers in Pitx3(-/-) aphakia mice. Neurobiol Dis 73:49–59

    Article  CAS  PubMed  Google Scholar 

  • Solis O, García-Montes JR, Garcia-Sanz P, Herranz AS, Asensio MJ, Kang G, Hiroi N, Moratalla R (2017) Human COMT over-expression confers a heightened susceptibility to dyskinesia in mice. Neurobiol Dis 102:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song DD, Haber SN (2000) Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting. J Neurosci 20:5102–5114

    Article  CAS  PubMed  Google Scholar 

  • Stanic D, Finkelstein DI, Bourke DW, Drago J, Horne MK (2003) Timecourse of striatal re-innervation following lesions of dopaminergic SNpc neurons of the rat. Eur J Neurosci 18:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Stanic D, Tripanichkul W, Drago J, Finkelstein DI, Horne MK (2004) Glial responses associated with dopaminergic striatal reinnervation following lesions of the rat substantia nigra. Brain Res 1023:83–91

    Article  CAS  PubMed  Google Scholar 

  • Suarez LM, Alberquilla S, García-Montes JR, Moratalla R (2018) Differential synaptic remodeling by dopamine in direct and indirect striatal projection neurons in Pitx3-/- mice, a genetic model of Parkinson’s disease. J Neurosci 38:3619–3630

    Article  CAS  PubMed  Google Scholar 

  • Switzer RC (2016) Application of silver degeneration stains for neurotoxicity testing. Toxicologic Pathology 28 (1):70–83

  • Tai Y, Chen L, Huang E, Liu C, Yang X, Qiu P, Wang H (2014) Protective effect of alpha-synuclein knockdown on methamphetamine-induced neurotoxicity in dopaminergic neurons. Neural Regen Res 9:951–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C (2006) New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. Brain 129:1194–1200

  • Tenkova TI, Goldberg MP (2007) A modified silver technique (de Olmos stain) for assessment of neuronal and axonal degeneration. Methods Mol Biol 399:31–39

    Article  CAS  PubMed  Google Scholar 

  • Tetzlaff W, Zwiers H, Lederis K, Cassar L, Bisby MA (1989) Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat. J Neurosci 9:1303–1313

    Article  CAS  PubMed  Google Scholar 

  • Torres-Platas SG, Comeau S, Rachalski A, Bo GD, Cruceanu C, Turecki G, Giros B, Mechawar N (2014) Morphometric characterization of microglial phenotypes in human cerebral cortex. J Neuroinflammation 11:12. https://doi.org/10.1186/1742-2094-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urrutia A, Granado N, Gutierrez-Lopez MD, Moratalla R, O'Shea E, Colado MI (2014) The JNK inhibitor, SP600125, potentiates the glial response and cell death induced by methamphetamine in the mouse striatum. Int J Neuropsychopharmacol 17:235–246

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, Gatley SJ, Miller E, Hitzemann R, Ding YS, Logan J (2001) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Smith L, Fowler JS, Telang F, Logan J, Tomasi D (2015) Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release. Neuroimage 121:20–28

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Lv R, Robert Brasic J, Han M, Liu X, Wang Y, Zhang G, Liu C, Li Y, Deng Y (2014) Dopamine transporter dysfunction in Han Chinese people with chronic methamphetamine dependence after a short-term abstinence. Psychiatry Res 221:92–96

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Spanish Ministry of Sanidad, Servicios Sociales e Igualdad, PNSD 2016/033, CIBERNED CB06/05/0055, Spanish Ministry of Economía y Competitividad, grant references: SAF2016-78207-R and PCIN-2015-098, and Fundacion Ramon Areces 172275. The authors want to specially thank Dr. Juan de Carlos for his help in providing an original figure by Ramon y Cajal that was used for this article, and Mrs. Emilia Rubio and Beatriz Pro for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Moratalla.

Ethics declarations

All experimental procedures conformed to European Community guidelines (2003/65/CE) and were approved by Cajal Institute’s Bioethics Committee (following DC86/609/EU).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Financial Disclosures

The authors reported no financial disclosures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granado, N., Ares-Santos, S., Tizabi, Y. et al. Striatal Reinnervation Process after Acute Methamphetamine-Induced Dopaminergic Degeneration in Mice. Neurotox Res 34, 627–639 (2018). https://doi.org/10.1007/s12640-018-9925-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-018-9925-z

Keywords

Navigation