Skip to main content

Advertisement

Log in

Blood Glutamate Reducing Effect of Hemofiltration in Critically Ill Patients

  • ORIGINAL ARTICLE
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Glutamate toxicity plays a well-established role in secondary brain damage following acute and chronic brain insults. Previous studies have demonstrated the efficacy of hemodialysis and peritoneal dialysis in reducing blood glutamate levels. However, these methods are not viable options for hemodynamically unstable patients. Given more favorable hemodynamics, longer treatment, and less needed anticoagulation, we investigated whether hemofiltration could be effective in lowering blood glutamate levels. Blood samples were taken from 10 critically ill patients immediately before initiation of hemofiltration and after 1, 2, 4, 6, and 12 h, for a total of 6 blood samples. Samples were sent for determination of glutamate, glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), hemoglobin, hematocrit, urea, creatinine, glucose, sodium, potassium, platelet, and white blood cell (WBC) levels. There was a statistically significant reduction in blood glutamate levels at all time points compared to baseline levels. There was no difference in levels of GOT or GPT. Hemofiltration can be a promising method of reducing blood glutamate levels, especially in critically ill patients where hemodialysis and peritoneal dialysis may be contraindicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aliprandi A, Longoni M, Stanzani L, Tremolizzo L, Vaccaro M, Begni B, Galimberti G, Garofolo R, Ferrarese C (2005) Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. J Cereb Blood Flow Metab 25:513–519

    Article  CAS  PubMed  Google Scholar 

  • Barton IK, Hilton PJ (1993) Veno-venous haemofiltration in the intensive care unit. Clin Intensive Care 4:16–22

    CAS  PubMed  Google Scholar 

  • Berl S, Takagaki G, Clarke DD, Waelsch H (1962) Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J Biol Chem 237:2562–2569

    CAS  PubMed  Google Scholar 

  • Boyko M, Zlotnik A, Gruenbaum BF, Gruenbaum SE, Ohayon S, Kuts R, Melamed I, Regev A, Shapira Y, Teichberg VI (2011) Pyruvate’s blood glutamate scavenging activity contributes to the spectrum of its neuroprotective mechanisms in a rat model of stroke. Eur J Neurosci 34:1432–1441

    Article  PubMed  Google Scholar 

  • Boyko M, Melamed I, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Brotfain E, Shapira Y, Zlotnik A (2012a) The effect of blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome in a rat model of subarachnoid hemorrhage. Neurotherapeutics 9:649–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyko M, Stepensky D, Gruenbaum BF, Gruenbaum SE, Melamed I, Ohayon S, Glazer M, Shapira Y, Zlotnik A (2012b) Pharmacokinetics of glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase and their blood glutamate-lowering activity in naive rats. Neurochem Res 37:2198–2205

    Article  CAS  PubMed  Google Scholar 

  • Boyko M, Gruenbaum SE, Gruenbaum BF, Shapira Y, Zlotnik A (2014) Brain to blood glutamate scavenging as a novel therapeutic modality: a review. J Neural Transm (Vienna) 121:971–979

    Article  CAS  Google Scholar 

  • Campos F, Sobrino T, Ramos-Cabrer P, Castellanos M, Blanco M, Rodriguez-Yanez M, Serena J, Leira R, Castillo J (2011a) High blood glutamate oxaloacetate transaminase levels are associated with good functional outcome in acute ischemic stroke. J Cereb Blood Flow Metab 31:1387–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Perez-Mato M, Rodriguez-Gonzalez R, Brea D, Castillo J (2011b) Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb Blood Flow Metab 31:1378–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo J, Davalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Castillo J, Davalos A, Noya M (1997) Progression of ischaemic stroke and excitotoxic aminoacids. Lancet 349:79–83

    Article  CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  • Ferrarese C, Aliprandi A, Tremolizzo L, Stanzani L, De Micheli A, Dolara A, Frattola L (2001) Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology 57:671–675

    Article  CAS  PubMed  Google Scholar 

  • Forni LG, Hilton PJ (1997) Continuous hemofiltration in the treatment of acute renal failure. N Engl J Med 336:1303–1309

    Article  CAS  PubMed  Google Scholar 

  • Friedrich JO, Wald R, Bagshaw SM, Burns KE, Adhikari NK (2012) Hemofiltration compared to hemodialysis for acute kidney injury: systematic review and meta-analysis. Crit Care 16:R146

    Article  PubMed  PubMed Central  Google Scholar 

  • Godino Mdel C, Romera VG, Sanchez-Tomero JA, Pacheco J, Canals S, Lerma J, Vivancos J, Moro MA, Torres M, Lizasoain I, Sanchez-Prieto J (2013) Amelioration of ischemic brain damage by peritoneal dialysis. J Clin Invest 123:4359–4363

    Article  PubMed  Google Scholar 

  • Gottlieb M, Wang Y, Teichberg VI (2003) Blood-mediated scavenging of cerebrospinal fluid glutamate. J Neurochem 87:119–126

    Article  CAS  PubMed  Google Scholar 

  • Graham LT Jr, Aprison MH (1966) Fluorometric determination of aspartate, glutamate, and gamma-aminobutyrate in nerve tissue using enzymic methods. Anal Biochem 15:487–497

    Article  CAS  PubMed  Google Scholar 

  • Green PS, Simpkins JW (2000) Neuroprotective effects of estrogens: potential mechanisms of action. Int J Dev Neurosci 18:347–358

    Article  CAS  PubMed  Google Scholar 

  • Ikonomidou C, Turski L (2002) Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 1:383–386

    Article  CAS  PubMed  Google Scholar 

  • Johnston MV, Trescher WH, Ishida A, Nakajima W (2001) Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res 49:735–741

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–14

    Article  CAS  PubMed  Google Scholar 

  • McCulloch J (1992) Excitatory amino acid antagonists and their potential for the treatment of ischaemic brain damage in man. Br J Clin Pharmacol 34:106–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaggan D, Naprstek J, Buurman ET, Epstein W (1994) Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J Biol Chem 269:1911–1917

    CAS  PubMed  Google Scholar 

  • Muir KW (2006) Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr Opin Pharmacol 6:53–60

    Article  CAS  PubMed  Google Scholar 

  • Nagy D, Knapp L, Marosi M, Farkas T, Kis Z, Vecsei L, Teichberg VI, Toldi J (2010) Effects of blood glutamate scavenging on cortical evoked potentials. Cell Mol Neurobiol 30:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895

    Article  PubMed  Google Scholar 

  • Patel P, Nandwani V, McCarthy PJ, Conrad SA, Keith Scott L (2010) Continuous renal replacement therapies: a brief primer for the neurointensivist. Neurocrit Care 13:286–294

    Article  PubMed  Google Scholar 

  • Rogachev B, Ohayon S, Saad A, Vorobiovsky V, Gruenbaum BF, Leibowitz A, Boyko M, Shapira Y, Shnaider A, Zlotnik M, Azab AN, Zlotnik A (2012) The effects of hemodialysis on blood glutamate levels in chronic renal failure: implementation for neuroprotection. J Crit Care 27:743 e1-7

    Article  PubMed  Google Scholar 

  • Rogachev B, Tsesis S, Gruenbaum BF, Gruenbaum SE, Boyko M, Klein M, Shapira Y, Vorobiev M, Zlotnik A (2013) The effects of peritoneal dialysis on blood glutamate levels: implementation for neuroprotection. J Neurosurg Anesthesiol 25:262–266

    Article  PubMed  Google Scholar 

  • Ronco C, Tetta C, Mariano F, Wratten ML, Bonello M, Bordoni V, Cardona X, Inguaggiato P, Pilotto L, d’Intini V, Bellomo R (2003) Interpreting the mechanisms of continuous renal replacement therapy in sepsis: the peak concentration hypothesis. Artif Organs 27:792–801

    Article  PubMed  Google Scholar 

  • Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ (1995) CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 4:209–216

    Article  CAS  PubMed  Google Scholar 

  • Soupart A, Silver S, Schrooeder B, Sterns R, Decaux G (2002) Rapid (24-hour) reaccumulation of brain organic osmolytes (particularly myo-inositol) in azotemic rats after correction of chronic hyponatremia. J Am Soc Nephrol 13:1433–1441

    Article  CAS  PubMed  Google Scholar 

  • Spranger M, Krempien S, Schwab S, Maiwald M, Bruno K, Hacke W (1996) Excess glutamate in the cerebrospinal fluid in bacterial meningitis. J Neurol Sci 143:126–131

    Article  CAS  PubMed  Google Scholar 

  • Teichberg VI, Cohen-Kashi-Malina K, Cooper I, Zlotnik A (2009) Homeostasis of glutamate in brain fluids: an accelerated brain-to-blood efflux of excess glutamate is produced by blood glutamate scavenging and offers protection from neuropathologies. Neuroscience 158:301–308

    Article  CAS  PubMed  Google Scholar 

  • Zauner A, Bullock R, Kuta AJ, Woodward J, Young HF (1996) Glutamate release and cerebral blood flow after severe human head injury. Acta Neurochir Suppl 67:40–44

    CAS  PubMed  Google Scholar 

  • Zlotnik A, Gurevich B, Tkachov S, Maoz I, Shapira Y, Teichberg VI (2007) Brain neuroprotection by scavenging blood glutamate. Exp Neurol 203:213–220

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gurevich B, Cherniavsky E, Tkachov S, Matuzani-Ruban A, Leon A, Shapira Y, Teichberg VI (2008) The contribution of the blood glutamate scavenging activity of pyruvate to its neuroprotective properties in a rat model of closed head injury. Neurochem Res 33:1044–1050

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Gruenbaum SE, Artru AA, Rozet I, Dubilet M, Tkachov S, Brotfain E, Klin Y, Shapira Y, Teichberg VI (2009) The neuroprotective effects of oxaloacetate in closed head injury in rats is mediated by its blood glutamate scavenging activity: evidence from the use of maleate. J Neurosurg Anesthesiol 21:235–241

    Article  PubMed  Google Scholar 

  • Zlotnik A, Gruenbaum BF, Mohar B, Kuts R, Gruenbaum SE, Ohayon S, Boyko M, Klin Y, Sheiner E, Shaked G, Shapira Y, Teichberg VI (2011a) The effects of estrogen and progesterone on blood glutamate levels: evidence from changes of blood glutamate levels during the menstrual cycle in women. Biol Reprod 84:581–586

    Article  CAS  PubMed  Google Scholar 

  • Zlotnik A, Ohayon S, Gruenbaum BF, Gruenbaum SE, Mohar B, Boyko M, Klin Y, Sheiner E, Shaked G, Shapira Y, Teichberg VI (2011b) Determination of factors affecting glutamate concentrations in the whole blood of healthy human volunteers. J Neurosurg Anesthesiol 23:45–49

    Article  PubMed  Google Scholar 

  • Zlotnik A, Klin Y, Gruenbaum BF, Gruenbaum SE, Ohayon S, Leibowitz A, Kotz R, Dubilet M, Boyko M, Shapira Y (2012) Teichberg VI: beta2 adrenergic-mediated reduction of blood glutamate levels and improved neurological outcome after traumatic brain injury in rats. J Neurosurg Anesthesiol 24:30–38

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Zlotnik.

Ethics declarations

This experiment was conducted according to the recommendations set forth by the Helsinki Committee and was approved by the Ethics Committee at Soroka University Medical Center, Beer Sheva, Israel.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brotfain, E., Kutz, R., Grinshpun, J. et al. Blood Glutamate Reducing Effect of Hemofiltration in Critically Ill Patients. Neurotox Res 33, 300–308 (2018). https://doi.org/10.1007/s12640-017-9791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-017-9791-0

Keywords

Navigation