Skip to main content

Advertisement

Log in

The Toxic Effect of ALLN on Primary Rat Retinal Neurons

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

N-acetyl-leucyl-leucyl-norleucinal (ALLN), an inhibitor of proteasomes and calpain, is widely used to reduce proteasomes or calpain-mediated cell death in rodents. However, ALLN is toxic to retinal neurons to some extent. At the concentration of 10 μM, ALLN is non-toxic to cortical neurons, but induces cell death of retinal neurons in vitro. The tolerance concentration of ALLN for retinal neurons is unclear, and the precise mechanism of cell death induced by ALLN remains elusive. In this study, we investigated the toxic effect of ALLN on primary retinal neurons. The 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed no significant changes of cell viability at 1 μM but decreased cell viability after treatment of ALLN at 2.5, 5, and 7.5 μM. Lactate dehydrogenase (LDH) release was highly elevated and propidium iodide (PI)-positive cells were significantly increased at 2.5, 5, and 7.5 μM after all treatment times. Moreover, the protein levels of caspase-3 were up-regulated at 5 and 7.5 μM after 12 and 24 h of ALLN treatment. The ratio of Bax/Bcl-2 was raised and Annexin V-positive cells were increased at 5 and 7.5 μM after 12 and 24 h of ALLN treatment. However, there were no significant changes in either the ratio of microtubule-associated protein 1 light chain 3 (LC3) II/LC3 I or monodansylcadaverine (MDC) staining. Our data clearly show that at the concentrations equal to and higher than 2.5 μM, ALLN may induce cell death of primary retinal neurons by necrosis and apoptosis, but not autophagy. These suggest that primary retinal neurons are more susceptible to ALLN treatment and provide a possible mechanism for the cell death of ALLN-sensitive cells in ALLN injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki T, Funakoshi T, Uemura K (2015) Regulated necrosis and its implications in toxicology. Toxicology 333:118–126. doi:10.1016/j.tox.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  • Atencio IA, Ramachandra M, Shabram P, Demers GW (2000) Calpain inhibitor 1 activates p53-dependent apoptosis in tumor cell lines. Cell Growth Differ 11:247–253

    CAS  PubMed  Google Scholar 

  • Barnstable CJ, Drager UC (1984) Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11:847–855

    Article  CAS  PubMed  Google Scholar 

  • Biederbick A, Kern HF, Elsasser HP (1995) Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur J Cell Biol 66:3–14

    CAS  PubMed  Google Scholar 

  • Borissenko L, Groll M (2007) 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev 107:687–717. doi:10.1021/cr0502504

    Article  CAS  PubMed  Google Scholar 

  • Cabon L et al (2012) BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death Differ 19:245–256

    Article  CAS  PubMed  Google Scholar 

  • Calderon-Sanchez E, Diaz I, Ordonez A, Smani T (2016) Urocortin-1 mediated cardioprotection involves XIAP and CD40-ligand recovery: role of EPAC2 and ERK1/2. PLoS One 11:e0147375. doi:10.1371/journal.pone.0147375

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee C, Sparks DL (2014) Hepatic lipase release is inhibited by a purinergic induction of autophagy. Cell Physiol Biochem 33:883–894

    Article  CAS  PubMed  Google Scholar 

  • Chun HJ, Lee Y, Kim AH, Lee J (2015) Methylglyoxal causes cell death in neural progenitor cells and iImpairs adult hippocampal. Neurogenesis Neurotox Res 21:21

    Google Scholar 

  • Concannon CG et al (2007) Apoptosis induced by proteasome inhibition in cancer cells: predominant role of the p53/PUMA pathway. Oncogene 26:1681–1692

    Article  CAS  PubMed  Google Scholar 

  • Czerwinski A, Basava C, Dauter M, Dauter Z (2015) Crystal structure of N-{N-[N-acetyl-(S)-leuc-yl]-(S)-leuc-yl}norleucinal (ALLN), an inhibitor of proteasome. Acta Crystallogr Sect E 71:254–257. doi:10.1107/S2056989015002091

    Article  CAS  Google Scholar 

  • Debiasi RL, Squier MK, Pike B, Wynes M, Dermody TS, Cohen JJ, Tyler KL (1999) Reovirus-induced apoptosis is preceded by increased cellular calpain activity and is blocked by calpain inhibitors. J Virol 73:695–701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding W, Shang L, Huang JF, Li N, Chen D, Xue LX, Xiong K (2015) Receptor interacting protein 3-induced RGC-5 cell necroptosis following oxygen glucose deprivation. BMC Neurosci 16:015–0187

    Article  Google Scholar 

  • Doonan F, Donovan M, Cotter TG (2005) Activation of multiple pathways during photoreceptor apoptosis in the rd mouse. Invest Ophthalmol Vis Sci 46:3530–3538

    Article  PubMed  Google Scholar 

  • Douglas DL, Baines CP (2014) PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways. J Cell Sci 127:4134–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan YJ, Zong WX (2013) The cellular decision between apoptosis and autophagy. Chin J Cancer 32:121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francis RJ, Kotecha S, Hallett MB (2013) Ca2+ activation of cytosolic calpain induces the transition from apoptosis to necrosis in neutrophils with externalized phosphatidylserine. J Leukoc Biol 93:95–100

    Article  CAS  PubMed  Google Scholar 

  • Francis RJ, Butler RE, Stewart GR (2014) Mycobacterium tuberculosis ESAT-6 is a leukocidin causing Ca2+ influx, necrosis and neutrophil extracellular trap formation. Cell Death Dis 16:394

    Google Scholar 

  • Galluzzi L et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Galvao J, Davis B, Tilley M, Normando E, Duchen MR, Cordeiro MF (2014) Unexpected low-dose toxicity of the universal solvent DMSO. Faseb J 28:1317–1330

    Article  CAS  PubMed  Google Scholar 

  • Harder JM, Libby RT (2011) BBC3 (PUMA) regulates developmental apoptosis but not axonal injury induced death in the retina. Mol Neurodegener 6:1326–1750

    Article  Google Scholar 

  • Honma Y, Harada M (2013) Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation. Exp Cell Res 319:2166–2178

    Article  CAS  PubMed  Google Scholar 

  • Hu WW, Yang Y, Wang Z, Shen Z, Zhang XN, Wang GH, Chen Z (2012) H1-antihistamines induce vacuolation in astrocytes through macroautophagy. Toxicol Appl Pharmacol 260:115–123

    Article  CAS  PubMed  Google Scholar 

  • Huang JF et al (2013) Differential neuronal expression of receptor interacting protein 3 in rat retina: involvement in ischemic stress response. BMC Neurosci 14:1471–2202

    Google Scholar 

  • Jiang SH et al (2014) The effect and underlying mechanism of Timosaponin B-II on RGC-5 necroptosis induced by hydrogen peroxide. BMC Complement Altern Med 14:1472–6882

    Google Scholar 

  • Kaur C, Rathnasamy G, Ling E-A (2015) Antioxidants and neuroprotection in the brain and retina. Front Med Chem 7:3–33

    Google Scholar 

  • Kerrison JB, Zack DJ (2007) Neurite outgrowth in retinal ganglion cell culture. Methods Mol Biol 356:427–434

    CAS  PubMed  Google Scholar 

  • Kim MJ et al (2007) Neuronal loss in primary long-term cortical culture involves neurodegeneration-like cell death via calpain and p35 processing, but not developmental apoptosis or aging. Exp Mol Med 39:14–26

    Article  CAS  PubMed  Google Scholar 

  • Kim HN et al (2013) Neuroprotective effects of Polygonum multiflorum extract against glutamate-induced oxidative toxicity in HT22 hippocampal cells. J Ethnopharmacol 150:108–115

    Article  CAS  PubMed  Google Scholar 

  • Krammer PH, Arnold R, Lavrik IN (2007) Life and death in peripheral T cells. Nat Rev Immunol 7:532–542

    Article  CAS  PubMed  Google Scholar 

  • Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14:759–774

    Article  CAS  PubMed  Google Scholar 

  • Li SZ, Zhang HH, Zhang JN, Zhang ZY, Zhang XF, Zhang XD, Du RL (2013) ALLN hinders HCT116 tumor growth through Bax-dependent apoptosis. Biochem Biophys Res Commun 437:325–330

    Article  CAS  PubMed  Google Scholar 

  • Li M et al (2014a) Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells. Virus Res 179:177–186

    Article  CAS  PubMed  Google Scholar 

  • Li SZ et al (2014b) UbcH10 overexpression increases carcinogenesis and blocks ALLN susceptibility in colorectal cancer. Sci Rep 4:6910. doi:10.1038/srep06910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma YG et al (2012) Activation of BK(Ca) channels in zoledronic acid-induced apoptosis of MDA-MB-231 breast cancer cells. PLoS One 7:24

    Google Scholar 

  • Miao Y, Chen J, Zhang Q, Sun A (2010) Deletion of tau attenuates heat shock-induced injury in cultured cortical neurons. J Neurosci Res 88:102–110

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Dong LD, Chen J, Hu XC, Yang XL, Wang Z (2012) Involvement of calpain/p35-p25/Cdk5/NMDAR signaling pathway in glutamate-induced neurotoxicity in cultured rat retinal neurons. PLoS One 7:1

    Google Scholar 

  • Mizukoshi S, Nakazawa M, Sato K, Ozaki T, Metoki T, Ishiguro S (2010) Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration. Exp Eye Res 91:353–361

    Article  CAS  PubMed  Google Scholar 

  • Monnerie H, Le Roux PD (2008) Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases. Exp Neurol 213:145–153

    Article  CAS  PubMed  Google Scholar 

  • Mouratidis PX, Rivens I, Ter Haar G (2015) A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells. Int J Hyperthermia. doi:10.3109/02656736.2015.1029995

    PubMed  Google Scholar 

  • Nadal-Nicolas FM et al (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50:3860–3868

    Article  PubMed  Google Scholar 

  • Nimmrich V et al (2008) Inhibition of calpain prevents N-Methyl-D-aspartate-induced degeneration of the nucleus basalis and associated behavioral dysfunction. J Pharmacol Exp Ther 327:343–352

    Article  CAS  PubMed  Google Scholar 

  • Patil AJ, Gramajo AL, Sharma A, Seigel GM, Kuppermann BD, Kenney MC (2009) Differential effects of nicotine on retinal and vascular cells in vitro. Toxicology 259:69–76

    Article  CAS  PubMed  Google Scholar 

  • Pietkiewicz S, Schmidt JH, Lavrik IN (2015a) Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J Immunol Methods 423:99–103

    Article  CAS  PubMed  Google Scholar 

  • Pietkiewicz S, Schmidt JH, Lavrik IN (2015b) Quantification of apoptosis and necroptosis at the single cell level by a combination of Imaging Flow Cytometry with classical Annexin V/propidium iodide staining. J Immunol Methods 11:00150–00152

    Google Scholar 

  • Pietsch M, Chua KC, Abell AD (2010) Calpains: attractive targets for the development of synthetic inhibitors. Curr Top Med Chem 10:270–293

    Article  CAS  PubMed  Google Scholar 

  • Pilecka I, Sadowski L, Kalaidzidis Y, Miaczynska M (2011) Recruitment of APPL1 to ubiquitin-rich aggresomes in response to proteasomal impairment. Exp Cell Res 317:1093–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebe JY, Bershteyn M, Hirotsune S, Wynshaw-Boris A, Baraban SC (2013) ALLN rescues an in vitro excitatory synaptic transmission deficit in Lis1 mutant mice. J Neurophysiol 109:429–436. doi:10.1152/jn.00431.2012

    Article  CAS  PubMed  Google Scholar 

  • Shang L, Huang JF, Ding W, Chen S, Xue LX, Ma RF, Xiong K (2014) Calpain: a molecule to induce AIF-mediated necroptosis in RGC-5 following elevated hydrostatic pressure. BMC Neurosci 15:1471–2202

    Article  Google Scholar 

  • Sosna J et al (2013) The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 11:11–76

    Article  Google Scholar 

  • Storling J, Allaman-Pillet N, Karlsen AE, Billestrup N, Bonny C, Mandrup-Poulsen T (2005) Antitumorigenic effect of proteasome inhibitors on insulinoma cells. Endocrinology 146:1718–1726

    Article  CAS  PubMed  Google Scholar 

  • Villalpando Rodriguez GE, Torriglia A (2013) Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. Biochim Biophys Acta 10:5

    Google Scholar 

  • Wakabayashi T, Kosaka J, Mori T, Yamada H (2012) Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem 60:777–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sang N, Zhang C, Raghupathi R, Tanzi RE, Saunders A (2015) Cathepsin L mediates the degradation of novel APP C-terminal fragments. Biochemistry 54:2806–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witort E, Lulli M, Carloni V, Capaccioli S (2013) Anticancer activity of an antisense oligonucleotide targeting TRADD combined with proteasome inhibitors in chemoresistant hepatocellular carcinoma cells. J Chemother 25:292–297

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Hu J, Tang H, Wang D, Huang X, He C, Zhu H (2011) Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors. BMC Cancer 11:1471–2407

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81371011, 81571939); National Key Technologies Research and Development Program of China (2012BAK14B03); Wu Jie-Ping Medical Foundation of the Minister of Health of China (320.6750.14118); Natural Science Foundation of Hunan Province (2015JJ2187); Teacher Research Foundation of Central South University (2014JSJJ026); and the Project of Innovation-driven Plan of Central South University (2015CXS022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ju-Fang Huang or Kun Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Shang, L., Wang, SC. et al. The Toxic Effect of ALLN on Primary Rat Retinal Neurons. Neurotox Res 30, 392–406 (2016). https://doi.org/10.1007/s12640-016-9624-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-016-9624-6

Keywords

Navigation