Skip to main content
Log in

Aminochrome Toxicity is Mediated by Inhibition of Microtubules Polymerization Through the Formation of Adducts with Tubulin

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this study, we investigated the role of adducts formation between aminochrome and tubulin and its interference in microtubules assembly and stability in aminochrome-induced toxicity in SH-SY5Y cells. We also investigated whether changes in the microtubules structures are an early event that could affect tubulin expression. We demonstrated in vitro that aminochrome tubulin adducts inhibit tubulin polymerization and that aminochrome induces microtubules disassembly. Moreover, when the SH-SY5Y cells were incubated with aminochrome, we observed an increase in soluble tubulin, indicating depolymerization of microtubules. Aminochrome generates disruption of the microtubules network, leading to changes in the morphology of the cells inducing cell death, in a dose- and time-dependent manner. Interestingly, these changes preceded cell death and were partly inhibited by paclitaxel, a microtubule-stabilizing agent. Furthermore, we observed that aminochrome increased early tubulin expression before significant cell death occurred. Consequently, all these antecedents suggest that aminochrome toxicity is mediated by early disruption of microtubules network, where the adduct formation between aminochrome and tubulin could be responsible for the inhibition in the assembly microtubules and the loss of microtubules stability. Possibly, the early changes in tubulin expression could correspond to compensatory mechanisms against the toxic effects of aminochrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguirre P, Urrutia P, Tapia V, Villa M, Paris I, Segura-Aguilar J, Núñez MT (2012) The dopamine metabolite aminochrome inhibits mitochondrial complex I and modifies the expression of iron transporters DMT1 and FPN1. Biometals 25:795–803

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Hopkin K, Johnson A, Walter P (2014) Essential cell biology. Garland science. New York, Taylor and Francis Group

    Google Scholar 

  • Arriagada C, Paris I, Sanchez de las Matas MJ, Martinez-Alvarado P, Cardenas S, Castañeda P, Graumann R, Perez-Pastene C, Olea-Azar C, Couve E, Herrero MT, Caviedes P, Segura-Aguilar J (2004) On the neurotoxicity mechanism of leukoaminochrome o-semiquinone radical derived from dopamine oxidation: mitochondria damage, necrosis, and hydroxyl radical formation. Neurobiol Dis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  • Baas PW, Ahmad FJ (2013) Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain 136:2937–2951

    Article  PubMed  PubMed Central  Google Scholar 

  • Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson-Lewis VR (2015) Oxidative stress and Parkinson’s disease. Front Neuroanat 9:91

    PubMed  PubMed Central  Google Scholar 

  • Breuss M, Keays DA (2014) Microtubules and neurodevelopmental disease: the movers and the makers. Adv Exp Med Biol 800:75–96

    Article  CAS  PubMed  Google Scholar 

  • Brunden KR, Trojanowski JQ, Smith AB 3rd, Lee VM, Ballatore C (2014) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 22:5040–5049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti G, Casagrande F, Calogero A, De Gregorio C, Pezzoli G, Cartelli D (2015) Linking microtubules to Parkinson’s disease: the case of parkin. Biochem Soc Trans 43:292–296

    Article  CAS  PubMed  Google Scholar 

  • Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E, Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP + -induced neurodegeneration. J Neurochem 115:247–258

    Article  CAS  PubMed  Google Scholar 

  • Cartelli D, Goldwurm S, Casagrande F, Pezzoli G, Cappelletti G (2012) Microtubule destabilization is shared by genetic and idiopathic Parkinson’s disease patient fibroblasts. PLoS One 7:e37467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartelli D, Casagrande F, Busceti CL, Bucci D, Molinaro G, Traficante A, Passarella D, Giavini E, Pezzoli G, Battaglia G, Cappelletti G (2013) Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci Rep 3:1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model. J Cell Biol 192:873–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi BH, Chattopadhaya S, le Thanh N, Feng L, Nguyen QT, Lim CB, Harikishore A, Nanga RP, Bharatham N, Zhao Y, Liu X, Yoon HS (2014) Suprafenacine, an indazole-hydrazide agent, targets cancer cells through microtubule destabilization. PLoS One 9:e110955

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Morfini GA, Langhamer LB, He Y, Brady ST, Kordower JH (2012) Alterations in axonal transport motor proteins in sporadic and experimental Parkinson’s disease. Brain 135:2058–2073

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuevas C, Huenchuguala S, Muñoz P, Villa M, Paris I, Mannervik B, Segura-Aguilar J (2015) Glutathione transferase-M2-2 secreted from glioblastoma cell protects SH-SY5Y cells from aminochrome neurotoxicity. Neurotox Res 27:217–228

    Article  CAS  PubMed  Google Scholar 

  • de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274

    Article  PubMed  Google Scholar 

  • Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Dráber P, Dráberová E (2012) Microtubules. In: Kavallaris M (ed) Cytoskeleton and human disease, 1st edn. Springer, New York, pp 29–53

    Chapter  Google Scholar 

  • Esteves AR, Gozes I, Cardoso SM (2014) The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson’s disease. Biochim Biophys Acta 1842:7–21

    Article  CAS  PubMed  Google Scholar 

  • Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death. Biochim Biophys Acta 1739:268–279

    Article  CAS  PubMed  Google Scholar 

  • Ferrer I, Martinez A, Blanco R (2011) Dalfó E (2011) Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: preclinical Parkinson disease. J Neural Transm 118:821–839

    Article  PubMed  Google Scholar 

  • Franco-Iborra S, Vila M, Perier C (2015) The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist. doi:10.1177/1073858415574600

    PubMed  Google Scholar 

  • Gan-Or Z, Dion PA, Rouleau GA (2015) Genetic perspective on the role of the Autophagy-Lysosome Pathway in Parkinson disease. Autophagy. doi:10.1080/15548627.2015.1067364

    PubMed  Google Scholar 

  • Gardner MK, Zanic M, Howard J (2013) Microtubule catastrophe and rescue. Curr Opin Cell Biol 25:14–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gąssowska M, Czapski GA, Pająk B, Cieślik M, Lenkiewicz AM, Adamczyk A (2014) Extracellular α-synuclein leads to microtubule destabilization via GSK-3β-dependent Tau phosphorylation in PC12 cells. PLoS One 9:e94259

    Article  PubMed  PubMed Central  Google Scholar 

  • Gigant B, Cormier A, Dorléans A, Ravelli RB, Knossow M (2009) Microtubule-destabilizing agents: structural and mechanistic insights from the interaction of colchicine and vinblastine with tubulin. Top Curr Chem 286:259–278

    Article  CAS  PubMed  Google Scholar 

  • Gornstein E, Schwarz TL (2014) The paradox of paclitaxel neurotoxicity: mechanisms and unanswered questions. Neuropharmacology 76:175–183

    Article  CAS  PubMed  Google Scholar 

  • Hang L, Thundyil J, Lim KL (2015) Mitochondrial dysfunction and Parkinson disease: a Parkin-AMPK alliance in neuroprotection. Ann N Y Acad Sci. doi:10.1111/nyas.12820

    PubMed  Google Scholar 

  • Herrero MT, Hirsch EC, Kastner A, Ruberg M, Luquin MR, Laguna J, Javoy-Agid F, Obeso JA, Agid Y (1993) Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP? Neuroscience 56:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334:345–348

    Article  CAS  PubMed  Google Scholar 

  • Hongo H, Kihara T, Kume T, Izumi Y, Niidome T, Sugimoto H, Akaike A (2012) Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization. Biochem Biophys Res Commun 426:94–99

    Article  CAS  PubMed  Google Scholar 

  • Huenchuguala S, Muñoz P, Zavala P, Villa M, Cuevas C, Ahumada U, Graumann R, Nore BF, Couve E, Mannervik B, Paris I, Segura-Aguilar J (2014) Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction. Autophagy 10:618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janezic S, Threlfella S, Dodsona PD, Dowiea MJ, Taylora TN, Potgietera D, Parkkinena L, Seniora SL, Anwara S, Ryana B, Deltheila T, Kosilloa P, Ciorocha M, Wagnera K, Ansorgea O, Bannermana DM, Bolama JP, Magilla PJ, Cragga SJ, Wade-Martinsa R (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. PNAS 110:E4016–E4025. doi:10.1073/pnas.1309143110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan MA, Kamath K (2007) How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 7:730–742

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Balakrishna M, Nayak VL, Shaik TB, Faazil S, Nimbarte VD (2014) Design and synthesis of imidazo[2,1-b]thiazole-chalcone conjugates: microtubule-destabilizing agents. Chem Med Chem 9:2766–2780

    Article  CAS  PubMed  Google Scholar 

  • Kamath K, Oroudjev E, Jordan MA (2010) Determination of microtubule dynamic instability in living cells. Methods Cell Biol 97:1–14

    Article  CAS  PubMed  Google Scholar 

  • Kanaan NM, Pigino GF, Brady ST, Lazarov O, Binder LI, Morfini GA (2013) Axonal degeneration in Alzheimer’s disease: when signaling abnormalities meet the axonal transport system. Exp Neurol 246:44–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Kaur G, Gill RK, Soni R, Bariwal J (2014) Recent developments in tubulin polymerization inhibitors: an overview. Eur J Med Chem 87:89–124

    Article  CAS  PubMed  Google Scholar 

  • Kiris E, Ventimiglia D, Feinstein SC (2010) Quantitative analysis of MAP-mediated regulation of microtubule dynamic instability in vitro focus on Tau. Methods Cell Biol 95:481–503

    Article  CAS  PubMed  Google Scholar 

  • Lancaster OM, Baum B (2014) Shaping up to divide: coordinating actin and microtubule cytoskeletal remodelling during mitosis. Semin Cell Dev Biol 34:109–115

    Article  CAS  PubMed  Google Scholar 

  • LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Law BM, Spain VA, Leinster VH, Chia R, Beilina A, Cho HJ, Taymans JM, Urban MK, Sancho RM, Blanca Ramírez M, Biskup S, Baekelandt V, Cai H, Cookson MR, Berwick DC, Harvey K (2014) A direct interaction between leucine-rich repeat kinase 2 and specific β-tubulin isoforms regulates tubulin acetylation. J Biol Chem 289:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Timasheff SN (1977) In vitro reconstitution of calf brain microtubules: effects of solution variable. Biochemistry 16:1754–1762

    Article  CAS  PubMed  Google Scholar 

  • Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373:2055–2066

    Article  CAS  PubMed  Google Scholar 

  • Li G, Faibushevich A, Turunen BJ, Yoon SO, Georg G, Michaelis ML, Dobrowsky RT (2003) Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons. J Neurochem 84:347–362

    Article  CAS  PubMed  Google Scholar 

  • Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E, Gay B, Lee VM, Trojanowski JQ, Smith AB 3rd, Brunden KR, Ballatore C (2014) Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J Med Chem 57:6116–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Kim-Han JS, Harmon S, Sakiyama-Elbert SE, O’Malley KL (2014) The Parkinsonian mimetic, 6-OHDA, impairs axonal transport in dopaminergic axons. Mol Neurodegener 9:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Masliah E, Dumaop W, Galasko D, Desplats P (2013) Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics 8:1030–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J (2015) DT-diaphorase prevents aminochrome-induced alpha-synuclein oligomer formation and neurotoxicity. Toxicol Sci 145:37–47

    Article  PubMed  Google Scholar 

  • Neely MD, Boutte A, Milatovic D, Montine TJ (2005) Mechanisms of 4-hydroxynonenal-induced neuronal microtubule dysfunction. Brain Res 1037:90–98

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Cardenas S, Lozano J, Perez-Pastene C, Graumann R, Riveros A, Caviedes P, Segura-Aguilar J (2007) Aminochrome as a preclinical experimental model to study degeneration of dopaminergic neurons in Parkinson’s disease. Neurotox Res 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Paris I, Perez-Pastene C, Couve E, Caviedes P, Ledoux S, Segura-Aguilar J (2009) Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. J Biol Chem 284:13306–13315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paris I, Perez-Pastene C, Cardenas S, Iturriaga-Vasquez P, Muñoz P, Couve E, Caviedes P, Segura-Aguilar J (2010) Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotox Res 18:82–92

    Article  PubMed  Google Scholar 

  • Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J (2011) Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 121:376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz MA, Flückiger R, Boak A, Kagan HM, Gallop PM (1991) Specific detection of quinoproteins by redox-cycling staining. J Biol Chem 266:689–692

    CAS  PubMed  Google Scholar 

  • Ren Y, Liu W, Jiang H, Jiang Q, Feng J (2005) Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem 280:34105–34112

    Article  CAS  PubMed  Google Scholar 

  • Risinger AL, Mooberry SL (2012) Microtubules as a target in cancer therapy. In: Kavallaris M (ed) Cytoskeleton and human disease, 1st edn. Springer, New York, pp 203–221

    Chapter  Google Scholar 

  • Samii A, Nutt JG, Ransom BR (2004) Parkinson’s disease. Lancet 363:1783–1793

    Article  CAS  PubMed  Google Scholar 

  • Sayas CL, Avila J (2014) Regulation of EB1/3 proteins by classical MAPs in neurons. Bioarchitecture 4:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura-Aguilar J, Kostrzewa RM (2015) Neurotoxin mechanisms and processes relevant to Parkinson’s disease: an update. Neurotox Res 27:328–354

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Lind C (1989) On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase. Chem Biol Interact 72:309–324

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA (2014) Protective and toxic roles of dopamine in Parkinson’s disease. J Neurochem 129:898–915

    Article  CAS  PubMed  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Microtube assembly in the absence of added nucleotides. Proc Natl Acad Sci 70:765–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava P, Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274:4788–4801

    Article  CAS  PubMed  Google Scholar 

  • Törnqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P (2002) Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B Analyt Technol Biomed Life Sci 778:279–308

    Article  PubMed  Google Scholar 

  • Van Laar VS, Mishizen AJ, Cascio M, Hastings TG (2009) Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol Dis 34:487–500

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Deng Y, Qing H (2015) The phosphorylation of α-synuclein: development and implication for the mechanism and therapy of the Parkinson’s disease. J Neurochem. doi:10.1111/jnc.13234

    Google Scholar 

  • Zajkowski T, Nieznanska H, Nieznanski K (2015) Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta 1853:2228–2239

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Tampellini D, Gatti A, Crippa R, Eisner M, Sulzer D, Ito S, Fariello R, Gallorini M (2002) The neuromelanin of human substantia nigra and its interaction with metals. J Neural Transm 109:663–672

    Article  CAS  PubMed  Google Scholar 

  • Zecca L, Bellei C, Costi P, Albertini A, Monzani E, Casella L, Gallorini M, Bergamaschi L, Moscatelli A, Turro NJ, Eisner M, Crippa PR, Ito S, Wakamatsu K, Bush WD, Ward WC, Simon JD, Zucca FA (2008) New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc Natl Acad Sci USA 105:17567–17572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported through funding from FONDECYT 1120337 and Project University Santo Tomás N000012858 and 0000016012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmgard B. Paris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño, A., Muñoz, P., Brito, P. et al. Aminochrome Toxicity is Mediated by Inhibition of Microtubules Polymerization Through the Formation of Adducts with Tubulin. Neurotox Res 29, 381–393 (2016). https://doi.org/10.1007/s12640-015-9560-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-015-9560-x

Keywords

Navigation