Skip to main content
Log in

Evidence for Synergism Between Cell Death Mechanisms in a Cellular Model of Neurodegeneration in Parkinson’s Disease

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Delineation of how cell death mechanisms associated with Parkinson’s disease (PD) interact and whether they converge would help identify targets for neuroprotective therapies. The purpose of this study was to use a cellular model to address these issues. Catecholaminergic SH-SY5Y neuroblastoma cells were exposed to a range of compounds (dopamine, rotenone, 5,8-dihydroxy-1,4-naphtho-107 quinone [naphthazarin], and Z-Ile-Glu(OBut)-Ala-Leu-al [PSI]) that are neurotoxic when applied to these cells for extended periods of times at specific concentrations. At the concentrations used, these compounds cause cellular stress via mechanisms that mimic those associated with causing neurodegeneration in PD, namely oxidative stress (dopamine), mitochondrial dysfunction (rotenone), lysosomal dysfunction (naphthazarin), and proteasomal dysfunction (PSI). The compounds were applied to the SH-SY5Y cells either alone or in pairs. When applied separately, the compounds produced a significant decrease in cell viability confirming that oxidative stress, mitochondrial, proteosomal, or lysosomal dysfunction can individually result in catecholaminergic cell death. When the compounds were applied in pairs, some of the combinations produced synergistic effects. Analysis of these interactions indicates that proteasomal, lysosomal, and mitochondrial dysfunction is exacerbated by dopamine-induced oxidative stress. Furthermore, inhibition of the proteasome or lysosome or increasing oxidative stress has a synergistic effect on cell viability when combined with mitochondrial dysfunction, suggesting that all cell death mechanisms impair mitochondrial function. Finally, we show that there are reciprocal relationships between oxidative stress, proteasomal dysfunction, and mitochondrial dysfunction, whereas lysosome dysfunction appears to mediate cell death via an independent pathway. Given the highly interactive nature of the various cell death mechanisms linked with PD, we predict that effective neuroprotective strategies should target multiple sites in these pathways, for example oxidative stress and mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ardley HC, Scott GB, Rose SA, Tan NG, Robinson PA (2004) UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson’s disease. J Neurochem 90:379–391. doi:10.1111/j.1471-4159.2004.02485.x

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R, Canet-Aviles RM, Sherer TB, Mastroberardino PG, McLendon C, Kim JH, Lund S, Na HM, Taylor G, Bence NF, Kopito R, Seo BB, Yagi T, Yagi A, Klinefelter G, Cookson MR, Greenamyre JT (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis 22:404–420

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  • Caneda-Ferron B, De Girolamo LA, Costa T, Beck KE, Layfield R, Billett EE (2008) Assessment of the direct and indirect effects of MPP+ and dopamine on the human proteasome: implications for Parkinson’s disease aetiology. J Neurochem 105:225–238. doi:10.1111/j.1471-4159.2007.05130.x

    Article  PubMed  CAS  Google Scholar 

  • Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  PubMed  CAS  Google Scholar 

  • Goldman JE, Yen SH, Chiu FC, Peress NS (1983) Lewy bodies of Parkinson’s disease contain neurofilament antigens. Science 221:1082–1084

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre JT, Hastings TG (2004) Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122

    Article  PubMed  CAS  Google Scholar 

  • Hoglinger GU, Carrard G, Michel PP, Medja F, Lombes A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86:1297–1307

    Article  PubMed  Google Scholar 

  • Imashuku S, Inui A, Nakamura T, Tanaka J, Miyake S (1973) Catecholamine metabolism in tissue culture cells of a neuroblastoma. J Clin Endocrinol Metab 36:931–936

    Article  PubMed  CAS  Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S36; discussion S36–S28. doi:10.1002/ana.10483

    Google Scholar 

  • Lannuzel A, Michel PP, Hoglinger GU, Champy P, Jousset A, Medja F, Lombes A, Darios F, Gleye C, Laurens A, Hocquemiller R, Hirsch EC, Ruberg M (2003) The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121:287–296

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Arnaud L, Rockwell P, Figueiredo-Pereira ME (2004) A single amino acid substitution in a proteasome subunit triggers aggregation of ubiquitinated proteins in stressed neuronal cells. J Neurochem 90:19–28. doi:10.1111/j.1471-4159.2004.02456.x

    Article  PubMed  CAS  Google Scholar 

  • Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, Nguyen HP, Teismann P, Schulz JB, Neumann M, Pichler BJ, Reischl G, Holzmann C, Schmitt I, Bornemann A, Kuhn W, Zimmermann F, Servadio A, Riess O (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28:2471–2484. doi:10.1523/JNEUROSCI.3040-07.2008

    Article  PubMed  CAS  Google Scholar 

  • Olanow WC (2008) Levodopa/dopamine replacement strategies in Parkinson’s disease—future directions. Mov Disord 23:S613–S622

    Article  PubMed  Google Scholar 

  • Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978. doi:10.1093/brain/awm318

    Article  PubMed  Google Scholar 

  • Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, Di Monte DA, Federoff HJ (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175:35–48. doi:10.1006/exnr.2002.7882

    Article  PubMed  CAS  Google Scholar 

  • Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899–908

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Kim JH, Betarbet R, Greenamyre JT (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16

    Article  PubMed  CAS  Google Scholar 

  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT (2007) Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100:1469–1479. doi:10.1111/j.1471-4159.2006.04333.x

    PubMed  CAS  Google Scholar 

  • Testa CM, Sherer TB, Greenamyre JT (2005) Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134:109–118. doi:10.1016/j.molbrainres.2004.11.007

    Article  PubMed  CAS  Google Scholar 

  • von Bohlen Und Halbach O, rieglstein K, Schober A, Schulz JB (2004) The dopaminergic nigrostriatal system: development, physiology, disease. Cell Tissue Res 318:3. doi:10.1007/s00441-004-0963-x

    Article  PubMed  Google Scholar 

  • Wislet-Gendebien S, D’Souza C, Kawarai T, St George-Hyslop P, Westaway D, Fraser P, Tandon A (2006) Cytosolic proteins regulate alpha-synuclein dissociation from presynaptic membranes. J Biol Chem 281:32148–32155. doi:10.1074/jbc.M605965200

    Article  PubMed  CAS  Google Scholar 

  • Wislet-Gendebien S, Visanji NP, Whitehead SN, Marsilio D, Hou W, Figeys D, Fraser PE, Bennett SA, Tandon A (2008) Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors. BMC Neurosci 9:92. doi:10.1186/1471-2202-9-92

    Article  PubMed  Google Scholar 

  • Yong-Kee C, Salomonczyk D, Nash J (2011) Development and validation of a screening assay for the evaluation of putative neuroprotective agents in the treatment of Parkinson’s disease. Neurotox Res 19:519–526

    Article  PubMed  CAS  Google Scholar 

  • Yong-Kee CJ, Sidorova E, Hanif A, Perera G, Nash JE (2012) Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson’s disease. Neurotox Res 21:185–194

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank NSERC, the Michael J Fox Foundation, and the University of Toronto for funding this research. Joanne Nash was a Michael J Fox research fellow when conducting this research at the Toronto Western Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Nash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong-Kee, C.J., Warre, R., Monnier, P.P. et al. Evidence for Synergism Between Cell Death Mechanisms in a Cellular Model of Neurodegeneration in Parkinson’s Disease. Neurotox Res 22, 355–364 (2012). https://doi.org/10.1007/s12640-012-9325-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-012-9325-8

Keywords

Navigation