Skip to main content
Log in

Nicotine Induces Sensitization of Turning Behavior in 6-Hydroxydopamine Lesioned Rats

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Nicotinic drugs have been proposed as putative drugs to treat Parkinson’s disease (PD). In this study, we investigated whether nicotine can sensitize parkinsonian animals to the effect of dopaminergic drugs. Testing this hypothesis is important because nicotine has been shown to present neuroprotective and acute symptomatic effects on PD, but few studies have addressed the question of whether it may induce long-lasting effects on dopamine neurotransmission. We tested this hypothesis in the 6-hydroxydopamine (6-OHDA) rat model of PD. A pretreatment of these rats with 0.1–1.0 mg/kg nicotine induced a dose-dependent sensitization of the turning behavior when the animals were challenged with the dopamine receptor agonist apomorphine 24 h later. In agreement with previous studies, while apomorphine induced contraversive turns, nicotine, as well as amphetamine, induced ipsiversive turns in the 6-OHDA rats. This result suggests that, like amphetamine, nicotine induces turning behavior by promoting release of dopamine in the non-lesioned striatum of the rats. However, it is unlikely that the release of dopamine may also explain the nicotine-induced sensitization of turning behavior. First, the dopamine amount that could be released in the lesioned hemi-striatum by the nicotine pretreatment was minimum—less than 3%, as detected by HPLC–EC. Second, a pretreatment with amphetamine did not induce this behavioral sensitization. A pretreatment with apomorphine-induced sensitization, but it was minimal when compared to that induced by nicotine. Therefore, it is unlikely that the sensitization of the turning behavior induced by nicotine was consequent of the release of dopamine. However, the expression of such sensitization seems to depend on the activation of dopaminergic receptors, since it was seen when the nicotine-sensitized animals were challenged with apomorphine, but not with a second nicotine challenge. These findings are relevant for PD drug therapy since they suggest that the doses of dopaminergic drugs used to treat PD could be reduced if a nicotinic drug were co-administered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agid Y, Javoy F, Glowinski J (1973) Hyperactivity of remaining dopaminergic neurones after partial destruction of the nigro-striatal dopaminergic system in the rat. Nat New Biol 245:150–151

    Article  PubMed  CAS  Google Scholar 

  • Ahlskog JE, Muenter MD (2001) Frequency of L-dopa related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  PubMed  CAS  Google Scholar 

  • Allam MF, Campbell MJ, Hofman A, Del Castillo AS, Frernadez-Crehuet Navajas R (2004) Smoking and Parkinson’s disease: systematic review of prospective studies. Mov Disord 19:614–621

    Article  PubMed  Google Scholar 

  • Balfour DJ, Fagerström KO (1996) Pharmacology of nicotine and its therapeutic use in smoking cessation and neurodegenerative disorders. Pharmacol Ther 72:51–81

    Article  PubMed  CAS  Google Scholar 

  • Balfour DJ, Benwell ME, Birrel CE, Kelly RJ, Al-Aloul M (1998) Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol Biochem Behav 59:1021–1030

    Article  PubMed  CAS  Google Scholar 

  • Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36:1490–1496

    PubMed  CAS  Google Scholar 

  • Calabresi P, Pisani A, Centonze D, Bernardi G (1997) Synaptic plasticity and physiological interactions between dopamine and glutamate in the striatum. Neurosci Biobehav Rev 21:519–523

    Article  PubMed  CAS  Google Scholar 

  • Carta AR, Lucia F, Annalisa P, Silvia P, Nicola S, Nicoletta S, Micaela M (2008) Behavioral and biochemical correlates of the dyskinetic potential of dopaminergic agonists in the 6-OHDA lesioned rat. Synapse 62:524–533

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS (1995) Nicotinic receptors and cholinergic neurotransmission in the central nervous system. Ann NY Acad Sci 757:73–83

    Article  PubMed  CAS  Google Scholar 

  • Da Cunha C, Wietzikoski EC, Ferro MM, Martinez GR, Vital MABF, Hipólide D, Tufik S, Canteras NS (2008) Hemiparkinsonian rats rotate toward the side with the weaker dopaminergic neurotransmission. Behav Brain Res 189:364–372

    Article  PubMed  CAS  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324

    Article  PubMed  CAS  Google Scholar 

  • Damsma G, Westerink BH, De Vries JB, Horn AS (1988) The effect of systemically applied cholinergic drugs on the striatal release of dopamine and its metabolites, as determined by automated brain dialysis in conscious rats. Neurosci Lett 89:349–354

    Article  PubMed  CAS  Google Scholar 

  • Dani J, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908

    Article  PubMed  CAS  Google Scholar 

  • Delfino MA, Stefano AV, Ferrario JE, Taravini IRE, Murer MG, Gershanik OS (2004) Behavioral sensitization to different dopamine agonists in a parkinsonian rodent model of drug-induced dyskinesias. Behav Brain Res 152:297–306

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64:20–24

    Article  PubMed  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara GD, Morelli M, Barone P, Pontieri F (1992) Priming as a model of behavioral sensitization. Dev Pharmacol Ther 18:223–227

    PubMed  Google Scholar 

  • Domino EF, Ni L, Zhang H (1999) Nicotine alone and in combination with L-DOPA methyl ester or the D2 agonist N-0923 in MPTP-induced chronic hemiparkinsonian monkeys. Exp Neurol 158:414–421

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Agnati L, Eneroth P, Gustafsson JA, Hokfelt T, Lofstrom A, Skett B, Skett P (1977) The effect of nicotine on central catecholamine neurons and gonadotropin secretion. I. Studies in the male rat. Med Biol 55:148–157

    PubMed  CAS  Google Scholar 

  • Giorguieff-Chesselet MF, Kemel ML, Wandscheer D, Glowinski J (1979) Regulation of dopamine release by presynaptic nicotinic receptors in rat striatal slices: effect of nicotine in a low concentration. Life Sci 25:1257–1262

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Rybicki BA, Johnson CC, Peterson EL (1999) Smoking and Parkinson’s disease: a dose-response relationship. Neurology 52:115–119

    PubMed  CAS  Google Scholar 

  • Hefti F, Melamed E, Wurtman RJ (1980) Partial lesions of the dopaminergic nigrostriatal system in the rat brain: biochemical characterization. Brain Res 195:123–137

    Article  PubMed  CAS  Google Scholar 

  • Henry B, Crossman AR, Brotchie JM (1998) Characterization of enhanced behavioral responses to L-Dopa following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Exp Neurol 151:334–342

    Article  PubMed  CAS  Google Scholar 

  • Ho A (2002) Two wrong makes a right: nicotine and caffeine as defensive agents against Parkinson’s disease. Nutr Bytes 8:3–7

    Google Scholar 

  • Imperato A, Mulas A, Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338

    Article  PubMed  CAS  Google Scholar 

  • Janhunen S, Ahtee L (2004) Comparison of the effects of nicotine and epibatidine on the striatal extracellular dopamine. Eur J Pharmacol 494:167–177

    Article  PubMed  CAS  Google Scholar 

  • Janhunen S, Tuominen RK, Ahtee L (2005) Comparison of the effects of nicotine and epibatidine given in combination with nomifensine on turning behavior in rats. Neurosci Lett 381:314–319

    Article  PubMed  CAS  Google Scholar 

  • Kaakkola S (1981) Effect of nicotine and muscarinic drugs on amphetamine- and apomorphine-induced circling behavior in rats. Acta Pharmacol Toxicol 48:162–167

    CAS  Google Scholar 

  • Kaakkola S, Wurtman RJ (1992) Effects of COMT inhibitors on striatal dopamine metabolism: a microdialysis study. Brain Res 587:241–249

    Article  PubMed  CAS  Google Scholar 

  • Kaakkola S, Tuominen RK, Mielikainen P, Paldanius P, Ahtee L (2000) Effects of nomifensine and tolcapone on nicotine-induced dopamine release in rat striatum. Soc Neurosci Abstr 26:900

    Google Scholar 

  • Kaiser S, Wonnacott S (2000) Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [H-3]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58:312–318

    PubMed  CAS  Google Scholar 

  • Kashihara K, Manabe Y, Shiro Y, Warita H, Abe K (2000) Effects of repeated methyl levodopa administration on apomorphine sensitivity of turning behavior and striatal Fos expression of rats with unilateral 6-OHDA lesions. Neurosci Res 38:273–279

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Obeso JA (2004) Challenges in Parkinson’s disease: restoration of the nigrostriatal dopamine system is not enough. Neurology 3:309–316

    PubMed  Google Scholar 

  • Levin ED, Rose JE (1995) Acute and chronic nicotinic interactions with dopamine systems and working memory performance. Ann NY Acad Sci 757:245–252

    Article  PubMed  CAS  Google Scholar 

  • Levin ED, Lawrence S, Petro A, Horton K, Seidler FJ, Slotkin TA (2006) Increased nicotine self-administration following prenatal exposure in female rats. Pharmacol Biochem Behav 85:669–674

    Article  PubMed  CAS  Google Scholar 

  • Maggio R, Riva M, Vaglini F, Fornai F, Molteni R, Armogida M, Racagni G, Corsini GU (1998) Nicotine prevents experimental Parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 71:2439–2446

    PubMed  CAS  Google Scholar 

  • Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three descending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519

    Article  PubMed  CAS  Google Scholar 

  • McGhee DS, Heath MJS, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  Google Scholar 

  • Morens DM, Grandinetti A, Reed D, White LR, Ross GW (1995) Cigarette smoking and protection for Parkinson’s disease: false association or etiologic clue? Neurology 45:1041–1051

    PubMed  CAS  Google Scholar 

  • Nisell M, Nimikos GG, Svensson TH (1995) Nicotine dependence systems and psychiatric disorders. Pharmacol Toxicol 76:157–162

    Article  PubMed  CAS  Google Scholar 

  • Obata T, Aomine M, Inada T, Kinemuchi H (2002) Nicotine suppresses 1-methyl-4-phenylpyridinium ion- induced hydroxyl radical generation in rat striatum. Neurosci Lett 330:122–124

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates, 5th edn. Academic Press, San Diego

    Google Scholar 

  • Pollack AE, Turgeon SM, Fink JS (1997) Apomorphine priming alters the response of striatal outflow pathways to D2 agonist stimulation in 6-OHDA-lesioned rats. Neuroscience 79:79–93

    Article  PubMed  CAS  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257

    Article  PubMed  CAS  Google Scholar 

  • Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldsson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigroestriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647

    Article  PubMed  CAS  Google Scholar 

  • Quik M (2004) Smoking, nicotine and Parkinson’s disease. Trends Neurosci 27:561–568

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Kulak JA (2002) Nicotine and nicotinic receptors; relevance to Parkinson’s disease. Neurotoxicology 23:581–594

    Article  PubMed  CAS  Google Scholar 

  • Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, Di Monte D (2007a) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurology 62:588–596

    Article  CAS  Google Scholar 

  • Quik M, O’Neill M, Perez XA (2007b) Nicotine neuroprotection against nigrostriatal damage: importance of the animal model. Trends Pharmacol Sci 28:229–235

    Article  PubMed  CAS  Google Scholar 

  • Rapier C, Lunt GG, Wonnacott S (1990) Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterization. J Neurochem 54:937–945

    Article  PubMed  CAS  Google Scholar 

  • Reid MS, Fox L, Ho LB, Berger SP (2000) Nicotine stimulation of extracellular glutamate levels in the nucleus accumbens: neuropharmacological characterization. Synapse 35:129–136

    Article  PubMed  CAS  Google Scholar 

  • Rowell PP (1995) Nanomolar concentrations of nicotine increase the release of [3H]dopamine from rat striatal synaptosomes. Neurosci Lett 189:171–175

    Article  PubMed  CAS  Google Scholar 

  • Sakurai Y, Takano Y, Kohjimoto Y, Honda K, Kamiya HO (1982) Enhancement of [3H]dopamine release and its [3h]metabolites in rat striatum by nicotinic drugs. Brain Res 242:99–106

    Article  PubMed  CAS  Google Scholar 

  • Salin-Pascual RJ, Alcocer-Castillejos NV, Alejo-Galarza G (2003) Nicotine dependence and psychiatric disorders. Rev Invest Clin 55:677–693

    PubMed  CAS  Google Scholar 

  • Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK (1998) Effects of SIB-1508Y, a novel neuronal nicotinic acetylcholine receptor agonist, on motor behavior in parkinsonian monkeys. Mov Disord 13:637–642

    Article  PubMed  CAS  Google Scholar 

  • Schwarting RKW, Huston JP (1996) The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Prog Neurobiol 26:226–242

    Google Scholar 

  • Seguela P, Wadiche J, Dineleymiller K, Dani JA, Patrick JW (1993) Molecular-cloning, functional-properties, and distribution of rat brain-alpha-7—a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  CAS  Google Scholar 

  • Soderpalm B, Ericson M, Olausson P, Blomqvist O, Engel JA (2000) Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol. Behav Brain Res 113:85–96

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Mirza NR, Shoaib M (1995) Nicotine psychopharmacology: addiction, cognition and neuroadaptation. Med Res Rev 15:47–72

    Article  PubMed  CAS  Google Scholar 

  • Teng L, Crooks PA, Buxton ST, Dwoskin LP (1997) Nicotinic-receptor mediation of S(-)nornicotine-evoked-3H-overflow from rat striatal slices preloaded with-3H-dopamine. J Pharmacol Exp Ther 283:778–787

    PubMed  CAS  Google Scholar 

  • Toth E, Sershen H, Hashim A, Vizi ES, Lajtha A (1992) Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res 17:265–271

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxydopamine-induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine system. Acta Physiol Scand Suppl 367:89–93

    Google Scholar 

  • Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of turning behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493

    Article  PubMed  CAS  Google Scholar 

  • Van Kampen JM, Stoessl AJ (2000) Dopamine D(1A) receptor function in a rodent model of tardive dyskinesia. Neuroscience 1013:629–635

    Article  Google Scholar 

  • Visanji NP, O’Neill MJ, Duty S (2006) Nicotine, but neither the alpha(4)beta(2) ligand RJR2403 nor an alpha 7 nAChR subtype selective agonist, protects against a partial 6-hydroxydopamine lesion of the rat median forebrain bundle. Neuropharmacology 51:506–516

    Article  PubMed  CAS  Google Scholar 

  • Westfall TC (1974) Effect of nicotine and other drugs on the release of 3H-norepinephrine and 3H-dopamine from rat brain slices. Neuropharmacology 13:693–700

    Article  PubMed  CAS  Google Scholar 

  • Whiteaker P, Garcha HS, Wonnacott S, Stolerman IP (1995) Locomotor activation and dopamine release produced by nicotine and isoarecolone in rats. Br J Pharmacol 116:2097–2105

    PubMed  CAS  Google Scholar 

  • White HK, Levin ED (1999) Four week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology 143:158–165

    Article  PubMed  CAS  Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotinic Ach receptors. Trends Neurosci 20:92–98

    Article  PubMed  CAS  Google Scholar 

  • Zachariou V, Caldarone BJ, Weathers-Lowin A, George TP, Elsworth JD, Roth RH, Changeux JP, Picciotto MR (2001) Nicotine receptor inactivation decreases sensitivity to cocaine. Neuropsychopharmacology 24:576–589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by CNPq, CAPES, Institutos do Milênio, and Fundação Araucária. The participation of Pedro Garção in some behavioral experiments and the English revision by Suzana Meinhardt is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Da Cunha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregório, M.L., Wietzikoski, E.C., Ferro, M.M. et al. Nicotine Induces Sensitization of Turning Behavior in 6-Hydroxydopamine Lesioned Rats. Neurotox Res 15, 359–366 (2009). https://doi.org/10.1007/s12640-009-9041-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9041-1

Keywords

Navigation