Skip to main content
Log in

Study on the Flotation Behavior and Mechanism of Glass Fiber Powder

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Improving the purity of glass fiber powder represents a crucial challenge that needs to be addressed in the development of the glass fiber industry. To investigate the flotation behavior of glass fiber powder and the adsorption mechanism of the collector on its surface, the effect of flotation time, collector type, and concentration in flotation experiments was studied. Zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were used for systematic analysis. The results show that flotation effectively removes the visible impurities mixed in the glass fiber powder. The collection capacity of poly (propylene glycol) bis (2-aminopropyl ether) (PEA) generally surpasses that of conventional monoamine collectors. With the novel collector PEA, especially at a concentration of 6 × 10−5 mol/L of PEA-D2000, the flotation recovery rate of glass fiber powder can reach approximately 95%. Furthermore, a flotation mechanism for the glass fiber powder using amine-based collectors is proposed. It is adsorbed onto the surface of glass fiber powder through − NH3+/−NH2 groups, primarily by hydrogen bonding, and supplemented by electrostatic adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Nazir MT, Khalid A, Wang C, Baena JC, Phung BT, Akram S, Wong KL, Yeoh GH (2022) Enhanced fire retardancy with excellent electrical breakdown voltage, mechanical and hydrophobicity of silicone rubber/aluminium trihydroxide composites by milled glass fibres and graphene nanoplatelets. Surf Interfaces 35:102494. https://doi.org/10.1016/j.surfin.2022.102494

    Article  CAS  Google Scholar 

  2. Saravanakumar K, Subramanian H, Arumugam V, Dhakal H (2019) Influence of milled glass fillers on the impact and compression after impact behavior of glass/epoxy composite laminates. Polym Test 75:133–141. https://doi.org/10.1016/j.polymertesting.2019.02.007

    Article  CAS  Google Scholar 

  3. Zhai H, Zhou X, Fang L, Lu A (2010) Study on mechanical properties of powder impregnated glass fiber reinforced poly(phenylene sulphide) by injection molding at various temperatures. J Appl Polym Sci 115(4):2019–2027. https://doi.org/10.1002/app.31214

    Article  CAS  Google Scholar 

  4. Zhang H, Li W, Yang X, Lu L, Wang X, Sun X, Zhang Y (2007) Development of polyurethane elastomer composite materials by addition of milled fiberglass with coupling agent. Mater Lett 61(6):1358–1362. https://doi.org/10.1016/j.matlet.2006.07.031

    Article  CAS  Google Scholar 

  5. Zhang H, Li W, Yang X, Zhang Y, Chen Y (2007) Microstructural characterizations and mechanical behavior of polyurethane elastomers strengthened with milled fiberglass. J Mater Process Tech 190(1–3):96–101. https://doi.org/10.1016/j.jmatprotec.2007.02.053

    Article  CAS  Google Scholar 

  6. Jing M, Sui G, Zhao J, Zhang Q, Fu Q (2019) Enhancing crystallization and mechanical properties of poly(lactic acid)/milled glass fiber composites via self-assembled nanoscale interfacial structures. Compos Part A-Appl S 117:219–229. https://doi.org/10.1016/j.compositesa.2018.11.020

    Article  CAS  Google Scholar 

  7. Luo B, Zhu Y, Sun C, Li Y, Han Y (2018) The flotation behavior and adsorption mechanisms of 2-((2-(decyloxy)ethyl)amino)lauric acid on quartz surface. Min Eng 117:121–126. https://doi.org/10.1016/j.mineng.2017.12.016

    Article  CAS  Google Scholar 

  8. Larsen E, Kleiv RA (2017) Flotation of metallurgical grade silicon and silicon metal from slag by selective hydrogen fluoride-assisted flotation. Metall Mater Trans B 48(6):2859–2865. https://doi.org/10.1007/s11663-017-1082-x

    Article  CAS  Google Scholar 

  9. Jiang X, Shi J, Chen C, Song W, Ban B, Li J, Wang A, Chen J (2021) Flotation mechanism and application of PEA with different chain lengths in quartz flotation. Chem Eng Sci 246:116813. https://doi.org/10.1016/j.ces.2021.116813

    Article  CAS  Google Scholar 

  10. Wang L, Sun W, Hu Y, Xu L (2014) Adsorption mechanism of mixed anionic/cationic collectors in Muscovite-Quartz flotation system. Min Eng 64:44–50. https://doi.org/10.1016/j.mineng.2014.03.021

    Article  CAS  Google Scholar 

  11. Vatalis KI, Charalambides G, Benetis NP (2015) Market of high purity quartz innovative applications. Procedia Econ Finance 24:734–742. https://doi.org/10.1016/s2212-5671(15)00688-7

    Article  Google Scholar 

  12. Wei M, Ban B, Li J, Sun J, Li F, Jiang X, Chen J (2019) Flotation behavior, collector adsorption mechanism of Quartz and Feldspar-Quartz systems using PEA as a Novel Green Collector. Silicon 12(2):327–338. https://doi.org/10.1007/s12633-019-00135-3

    Article  CAS  Google Scholar 

  13. Crundwell FK (2016) On the mechanism of the flotation of oxides and silicates. Min Eng 95:185–196. https://doi.org/10.1016/j.mineng.2016.06.017

    Article  CAS  Google Scholar 

  14. Jada A, Akbour RA, Douch J (2006) Surface charge and adsorption from water onto quartz sand of humic acid. Chemosphere 64(8):1287–1295. https://doi.org/10.1016/j.chemosphere.2005.12.063

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, He C, Yang X (2008) Water contents and deformation mechanism in ductile shear zone of middle crust along the Red River fault in southwestern China. Sci China Ser D 51(10):1411–1425. https://doi.org/10.1007/s11430-008-0115-3

    Article  CAS  Google Scholar 

  16. Saikia BJ, Parthasarathy G, Sarmah NC (2008) Fourier transform infrared spectroscopic estimation of crystallinity in SiO2 based rocks. B Mater Sci 31(5):775–779. https://doi.org/10.1007/s12034-008-0123-0

    Article  CAS  Google Scholar 

  17. Wu J, Zhao L, Chronister EL, Tolbert SH (2002) Elasticity through nanoscale distortions in periodic surfactant-templated porous silica. J Phys Chem B 106(22):5613–5621. https://doi.org/10.1021/jp013497n

    Article  CAS  Google Scholar 

  18. Liu W, Liu W, Wei D, Li M, Zhao Q, Xu S (2017) Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz. Chem Eng J 309:63–69. https://doi.org/10.1016/j.cej.2016.10.036

    Article  CAS  Google Scholar 

  19. Li J, Lin Y, Shi J, Ban B, Sun J, Ma Y, Wang F, Lv W, Chen J (2020) Recovery of high purity Si from kerf-loss Si slurry waste by flotation method using PEA collector. Waste Manage 115:1–7. https://doi.org/10.1016/j.wasman.2020.07.023

    Article  CAS  Google Scholar 

  20. Papini RM, Brandao PRG, Peres AEC (2001) Cationic flotation of iron ores: amine characterization and performance. Min Metall Proc 18(1):5–9. https://doi.org/10.1007/BF03402863

    Article  CAS  Google Scholar 

  21. Kasomo RM, Li H, Zheng H, Chen Q, Weng X, Mwangi AD, Kiamba E, Song S (2020) Depression of the selective separation of rutile from almandine by sodium hexametaphosphate. Colloid Surf A 593:124631. https://doi.org/10.1016/j.colsurfa.2020.124631

    Article  CAS  Google Scholar 

  22. Wang X, Plackowski CA, Nguyen AV (2016) X-ray photoelectron spectroscopic investigation into the surface effects of sulphuric acid treated natural zeolite. Powder Technol 295:27–34. https://doi.org/10.1016/j.powtec.2016.03.025

    Article  CAS  Google Scholar 

  23. Liu W, Liu W, Wang X, Wei D, Wang B (2016) Utilization of novel surfactant N-dodecyl-isopropanolamine as collector for efficient separation of quartz from hematite. Sep Purif Technol 162:188–194. https://doi.org/10.1016/j.seppur.2016.02.033

    Article  CAS  Google Scholar 

  24. Buckley AN, Parker GK (2013) Adsorption of n-octanohydroxamate collector on iron oxides. Int J Min Process 121:70–89. https://doi.org/10.1016/j.minpro.2013.03.004

    Article  CAS  Google Scholar 

  25. Alagta A, Felhösi I, Bertoti I, Kálmán E (2008) Corrosion protection properties of hydroxamic acid self-assembled monolayer on carbon steel. Corros Sci 50(6):1644–1649. https://doi.org/10.1016/j.corsci.2008.02.008

    Article  CAS  Google Scholar 

  26. Xu L, Tian J, Wu H, Deng W, Yang Y, Sun W, Gao Z, Hu Y (2017) New insights into the oleate flotation response of feldspar particles of different sizes: anisotropic adsorption model. J Colloid Interf Sci 505:500–508. https://doi.org/10.1016/j.jcis.2017.06.009

    Article  CAS  Google Scholar 

  27. Fuerstenau DW, Pradip (2005) Zeta potentials in the flotation of oxide and silicate minerals. Adv Colloid Interfac 114–115:9–26. https://doi.org/10.1016/j.cis.2004.08.006

    Article  CAS  Google Scholar 

  28. Mhlanga SS, O’connor CT, Mcfadzean B (2012) A study of the relative adsorption of guar onto pure minerals. Min Eng 36–38:172–178. https://doi.org/10.1016/j.mineng.2012.03.026

    Article  CAS  Google Scholar 

  29. Jiang X, Chen J, Wei M, Li F, Ban B, Li J (2020) Effect of impurity content difference between quartz particles on flotation behavior and its mechanism. Powder Technol 375:504–512. https://doi.org/10.1016/j.powtec.2020.07.107

    Article  CAS  Google Scholar 

  30. Jiang X, Chen J, Ban B, Song W, Chen C, Yang X (2022) Application of competitive adsorption of ethylenediamine and polyetheramine in direct float of quartz from quartz-feldspar mixed minerals under neutral pH conditions. Min Eng 188:107850. https://doi.org/10.1016/j.mineng.2022.107850

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors provide their gratitude to University of Science and Technology of China and Hefei Institutes of Physical Science, Chinese Academy of Sciences for their support.

Funding

This work was financially supported by National Natural Science Foundation of China (No.51804294, No.51874272, and No.52111540265); Anhui Provincial Natural Science Foundation (3No. 1808085ME121); Key Laboratory of Photovoltaic and Energy Conservation Materials, Chinese Academy of Science (PECL2021QN003); HFIPS President Foundation (YZJJZX202018); International Clean Energy Talent Program by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

Zhangchao Mo: Conceptualization, Methodology, Writing-original draft. Xiaoxiao Zhu: Investigation, Methodology. Xuesong Jiang: Validation. Juxuan Ding: Visualization. Ling Wang: Resources. Boyuan Ban: Resources. Jifei Sun: Visualization. Jian Chen: Supervision, Resources, Writing – review & editing.

Corresponding author

Correspondence to Jian Chen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, Z., Zhu, X., Jiang, X. et al. Study on the Flotation Behavior and Mechanism of Glass Fiber Powder. Silicon (2024). https://doi.org/10.1007/s12633-024-02984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02984-z

Keywords

Navigation