Skip to main content
Log in

High Efficiency of Myclobutanil Adsorption by CTAB-zeolite Structures: Experimental Evidence Meets Theoretical Investigation

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Pesticides effectively manage fungal diseases in fruits and vegetables; however, their toxicity poses significant environmental risks to human beings. Consequently, the chemical industry faces a daunting challenge in controlling or eliminating the presence of pesticides in the natural environment. The present work reports the synthesis of zeolitic materials with distinct structural properties (starting from the layered precursor PREFER and 3D-faujasite) and their use for the removal of the pesticide myclobutanil. The PREFER sample underwent two distinct treatments: external functionalization with CTAB and layers separation (delamination). On the other hand, external functionalization of the faujasite surface with different CTAB contents was performed. The results showed that the potentially delaminated PREFER sample (PREFER-CTAB-90ºC) performed better in removing the pesticide among all the samples due to the higher availability of CTAB on their exposed lamellae. In contrast, the samples with a double-layered arrangement of CTAB chains presented better pesticide removal performance in comparison with the samples with a single CTAB arrangement. DFT calculations were performed to elucidate the interaction mechanism occurring between myclobutanil and CTAB. The obtained results indicate that the adsorption of myclobutanil by two CTAB molecules is more efficient than a single CTAB; the calculated binding energy considering two CTAB molecules in the process was nearly four times larger than for a single CTAB. The theoretical data provided validation for the adsorbent performances, including a detailed discussion of molecular mechanisms (with and without solvent effects). This proof-of-principle study emphasizes the significant potential of CTAB-functionalized zeolite in removing myclobutanil. This represents an important advancement toward better understanding and harnessing the capabilities of this material for effective and efficient pesticide removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Soler-Rodríguez F, Oropesa Jiménez AL (2014) Myclobutanil. In: Encyclopedia of toxicology. Elsevier, pp 420–423. https://doi.org/10.1016/B978-0-12-386454-3.01195-7

  2. Su H, Lin Y, Wang Z et al (2016) Magnetic metal–organic framework–titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples. J Chromatogr A 1466:21–28. https://doi.org/10.1016/j.chroma.2016.08.066

    Article  CAS  PubMed  Google Scholar 

  3. Sang W, Mei L, Hao S et al (2020) Na@La-modified zeolite particles for simultaneous removal of ammonia nitrogen and phosphate from rejected water: performance and mechanism. Water Sci Technol 82:2975–2989. https://doi.org/10.2166/wst.2020.541

    Article  CAS  PubMed  Google Scholar 

  4. Taher T, Melati EKA, Febrina M et al (2023) Effect of Desilication on Indonesian Natural Zeolite for the enhancement of ammonium ion removal from Aqueous solutions. Silicon. https://doi.org/10.1007/s12633-023-02758-z

    Article  Google Scholar 

  5. Largo F, Haounati R, Ouachtak H et al (2023) Design of organically modified sepiolite and its use as adsorbent for hazardous malachite green dye removal from water. Water Air Soil Pollut 234:183. https://doi.org/10.1007/s11270-023-06185-z

    Article  CAS  Google Scholar 

  6. de Pietre MK, Freitas JCC (2022) Fundamental studies on zeolite–adsorbate interactions: designing a better aluminosilicate adsorbent for pollutants’ removal. Environ Earth Sci 81:17. https://doi.org/10.1007/s12665-021-10130-w

    Article  Google Scholar 

  7. Abdelrahman EA, El-Dougdoug W, Kotp YH (2023) Facile hydrothermal synthesis of Novel Zeolite Nanostructures for the efficient removal of pb(II) and hg(II) ions from aqueous media. Silicon 15:7453–7475. https://doi.org/10.1007/s12633-023-02603-3

    Article  CAS  Google Scholar 

  8. Ouachtak H, El Guerdaoui A, El Haouti R et al (2023) Combined molecular dynamics simulations and experimental studies of the removal of cationic dyes on the eco-friendly adsorbent of activated carbon decorated montmorillonite Mt@AC. RSC Adv 13:5027–5044. https://doi.org/10.1039/D2RA08059A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walcarius A, Mercier L (2010) Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. J Mater Chem 20:4478. https://doi.org/10.1039/b924316j

    Article  CAS  Google Scholar 

  10. Taffarel SR, Rubio J (2010) Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Min Eng 23:771–779. https://doi.org/10.1016/j.mineng.2010.05.018

    Article  CAS  Google Scholar 

  11. Spiridonov AM, Aprosimova Ev, Zabolotskii VI et al (2019) Adsorption of Cetyltrimethylammonium Bromide on Zeolite Surface. Russ J Phys Chem A 93:917–923. https://doi.org/10.1134/S0036024419050285

    Article  CAS  Google Scholar 

  12. Goncalves MB, Schmidt DVC, dos Santos FS et al (2021) Nanostructured faujasite zeolite as metal ion adsorbent: kinetics, equilibrium adsorption and metal recovery studies. Water Sci Technol 83:358–371. https://doi.org/10.2166/wst.2020.580

    Article  CAS  PubMed  Google Scholar 

  13. Ramos FSO, de Pietre MK, Pastore HO (2013) Lamellar zeolites: an oxymoron? RSC Adv 3:2084–2111. https://doi.org/10.1039/C2RA21573J

    Article  CAS  Google Scholar 

  14. Teixeira RS, Schmidt DVC, dos Santos FS et al (2023) Nanostructured faujasites with different structural and textural properties for adsorption of cobalt and nickel. Braz J Chem Eng. https://doi.org/10.1007/s43153-023-00382-3

    Article  Google Scholar 

  15. de Pietre MK, Bonk FA, Rettori C et al (2011) [V,Al]-ITQ-6: novel porous material and the effect of delamination conditions on V sites and their distribution. Microporous Mesoporous Mater 145:108–117. https://doi.org/10.1016/j.micromeso.2011.04.031

    Article  CAS  Google Scholar 

  16. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  17. Schlumberger C, Thommes M (2021) Characterization of hierarchically ordered porous materials by Physisorption and Mercury Porosimetry—a tutorial review. Adv Mater Interfaces 8:2002181. https://doi.org/10.1002/admi.202002181

    Article  CAS  Google Scholar 

  18. Neese F (2012) The ORCA program system. WIREs Comput Mol Sci 2:73–78. https://doi.org/10.1002/wcms.81

    Article  CAS  Google Scholar 

  19. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab Initio Calculation of Vibrational Absorption and circular dichroism Spectra using density Functional Force Fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  20. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  21. de Sousa DNR, Insa S, Mozeto AA et al (2018) Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205:137–146. https://doi.org/10.1016/j.chemosphere.2018.04.085

    Article  CAS  PubMed  Google Scholar 

  22. Chaves TF, Pastore HO, Cardoso D (2012) A simple synthesis procedure to prepare nanosized faujasite crystals. Microporous Mesoporous Mater 161:67–75. https://doi.org/10.1016/j.micromeso.2012.05.022

    Article  CAS  Google Scholar 

  23. Zhang X, Tong DQ, Zhao JJ, Li XY (2013) Synthesis of NaX zeolite at room temperature and its characterization. Mater Lett 104:80–83. https://doi.org/10.1016/j.matlet.2013.03.131

    Article  CAS  Google Scholar 

  24. Pratti LM, Reis GM, dos Santos FS et al (2019) Effects of textural and chemical properties of β-zeolites on their performance as adsorbents for heavy metals removal. Environ Earth Sci 78:553. https://doi.org/10.1007/s12665-019-8568-6

    Article  CAS  Google Scholar 

  25. Zukal A, Dominguez I, Mayerová J, Čejka J (2009) Functionalization of Delaminated Zeolite ITQ-6 for the adsorption of Carbon Dioxide. Langmuir 25:10314–10321. https://doi.org/10.1021/la901156z

    Article  CAS  PubMed  Google Scholar 

  26. de Pietre MK, Bonk FA, Rettori C et al (2012) Delaminated vanadoaluminosilicate with [V,Al]-ITQ-18 structure. Microporous Mesoporous Mater 156:244–256. https://doi.org/10.1016/j.micromeso.2012.02.032

    Article  CAS  Google Scholar 

  27. Angaru GKR, Lingamdinne LP, Koduru JR, Chang Y-Y (2022) N-Cetyltrimethylammonium bromide-modified Zeolite Na-A from Waste fly Ash for Hexavalent Chromium removal from Industrial Effluent. J Compos Sci 6:256. https://doi.org/10.3390/jcs6090256

    Article  CAS  Google Scholar 

  28. Monsivais-Gámez E, Ruiz F, Martínez JR (2007) Four-membered rings family in the Si–O extended rocking IR band from quantum chemistry calculations. J Solgel Sci Technol 43:65–72. https://doi.org/10.1007/s10971-007-1578-y

    Article  CAS  Google Scholar 

  29. Zebib B, Lambert J-F, Blanchard J, Breysse M (2006) LRS-1: a New Delaminated Phyllosilicate Material with High Acidity. Chem Mater 18:34–40. https://doi.org/10.1021/cm050643j

    Article  CAS  Google Scholar 

  30. Li ZY, Gu LL, Tong ZH et al (2021) Computer simulation assisted preparation and application of myclobutanil imprinted nanoparticles. Polym (Guildf) 217:123467. https://doi.org/10.1016/j.polymer.2021.123467

    Article  CAS  Google Scholar 

  31. Murugavel S, Ravikumar C, Jaabil G, Alagusundaram P (2019) Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine – A novel potent human topoisomerase IIα inhibitor. J Mol Struct 1176:729–742. https://doi.org/10.1016/j.molstruc.2018.09.010

    Article  CAS  Google Scholar 

  32. Corma A, Fornés V, Díaz U (2001) ITQ-18 a new delaminated stable zeolite. Chem Commun 2642–2643:2642. https://doi.org/10.1039/b108777k

    Article  CAS  Google Scholar 

  33. Schreyeck L, Caullet P, Mougenel JC et al (1996) PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Mater 6:259–271. https://doi.org/10.1016/0927-6513(96)00032-6

    Article  CAS  Google Scholar 

  34. Haounati R, Ouachtak H, El Haouti R et al (2021) Elaboration and properties of a new SDS/CTAB@Montmorillonite organoclay composite as a superb adsorbent for the removal of malachite green from aqueous solutions. Sep Purif Technol 255:117335. https://doi.org/10.1016/j.seppur.2020.117335

    Article  CAS  Google Scholar 

  35. Ighnih H, Haounati R, Ouachtak H et al (2023) Efficient removal of hazardous dye from aqueous solutions using magnetic kaolinite nanocomposite: experimental and Monte Carlo simulation studies. Inorg Chem Commun 153:110886. https://doi.org/10.1016/j.inoche.2023.110886

    Article  CAS  Google Scholar 

  36. Çoruh S, Şenel G, Ergun ON (2010) A comparison of the properties of natural clinoptilolites and their ion-exchange capacities for silver removal. J Hazard Mater 180:486–492. https://doi.org/10.1016/j.jhazmat.2010.04.056

    Article  CAS  PubMed  Google Scholar 

  37. Yang R, Chen J, Zhang Z, Wu D (2022) Performance and mechanism of lanthanum-modified zeolite as a highly efficient adsorbent for fluoride removal from water. Chemosphere 307:136063. https://doi.org/10.1016/j.chemosphere.2022.136063

    Article  CAS  PubMed  Google Scholar 

  38. Ouachtak H, El Guerdaoui A, Haounati R et al (2021) Highly efficient and fast batch adsorption of orange G dye from polluted water using superb organo-montmorillonite: experimental study and molecular dynamics investigation. J Mol Liq 335:116560. https://doi.org/10.1016/j.molliq.2021.116560

    Article  CAS  Google Scholar 

  39. Ouachtak H, El Haouti R, El Guerdaoui A et al (2020) Experimental and molecular dynamics simulation study on the adsorption of rhodamine B dye on magnetic montmorillonite composite γ-Fe2O3@Mt. J Mol Liq 309:113142. https://doi.org/10.1016/j.molliq.2020.113142

    Article  CAS  Google Scholar 

  40. Alver E, Metin AÜ (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67. https://doi.org/10.1016/j.cej.2012.06.038

    Article  CAS  Google Scholar 

  41. Stojakovic D, Hrenovic J, Mazaj M, Rajic N (2011) On the zinc sorption by the Serbian natural clinoptilolite and the disinfecting ability and phosphate affinity of the exhausted sorbent. J Hazard Mater 185:408–415. https://doi.org/10.1016/j.jhazmat.2010.09.048

    Article  CAS  PubMed  Google Scholar 

  42. Yan B, Li J, Li H-Y et al (2016) Crystal structure and thermodynamic properties of myclobutanil. J Chem Thermodyn 101:44–48. https://doi.org/10.1016/j.jct.2016.05.014

    Article  CAS  Google Scholar 

  43. Cramer CJ, Truhlar DG (1999) Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev 99:2161–2200. https://doi.org/10.1021/cr960149m

    Article  CAS  PubMed  Google Scholar 

  44. Chowdhury S, Chakraborty S, Saha P (2011) Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids Surf B Biointerfaces 84:520–527. https://doi.org/10.1016/j.colsurfb.2011.02.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from FAPERJ, CAPES and CNPq is gratefully acknowledged. The authors are thankful to Dr. Thiago Lima and Dr. Letícia Vitorazi for the support to this work and are also grateful to the Laboratory for Research and Development of Methodologies for Crude Oil Analysis (LabPetro), at the Federal University of Espírito Santo (UFES), for the use of experimental facilities.

Funding

This work was supported by FAPERJ (grant Nº E-26/210.138/2022).

Author information

Authors and Affiliations

Authors

Contributions

Caio S. Moraes: Investigation; Patrícia A. Carneiro: Formal analysis, Review & Editing; Daniel F. Cipriano: Investigation; Diêgo N. Faria: Investigation; Formal analysis; Jair C. C. Freitas: Funding acquisition; Formal analysis, Writing – Review & Editing; Rodrigo G. Amorim: Funding acquisition; Theoretical approach; Writing – Review & Editing; Ramon S. da Silva: Theoretical approach; Writing – Review & Editing; Mendelssolm K. de Pietre: Conceptualization; Funding acquisition; Formal analysis; Writing – Original Draft; Writing – Review & Editing; Project administration.

Corresponding author

Correspondence to Mendelssolm K. Pietre.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors consent to participate in the study.

Consent for Publication

The authors consent to publish the study.

Competing Interests

 The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, C.S., Carneiro, P.A., Faria, D.N. et al. High Efficiency of Myclobutanil Adsorption by CTAB-zeolite Structures: Experimental Evidence Meets Theoretical Investigation. Silicon (2024). https://doi.org/10.1007/s12633-024-02950-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02950-9

Keywords

Navigation