Skip to main content
Log in

Effect of Desilication on Indonesian Natural Zeolite for the Enhancement of Ammonium Ion Removal from Aqueous Solutions

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The removal of ammonium from wastewater is a crucial process to mitigate the potential environmental issues associated with high nitrogen content in the water bodies. Natural zeolite, particularly clinoptilolite, has shown promise as an adsorbent for this purpose due to its unique surface properties. While zeolite has been studied extensively in this context, the current work represents an exploration of natural zeolite from The Tanggamus District, Indonesia. The study evaluated the impact of the desilication process on the ammonium adsorption capacity of this natural zeolite. The zeolites were characterized using XRD, XRF, and SEM. Batch adsorption studies revealed that the modified zeolite showed promising ammonium adsorption performance up to 35.4 mg/g. The adsorption data fit well with the pseudo-second-order kinetics and Freundlich isotherm model, suggesting chemisorption as the predominant mechanism. The effect of temperature and thermodynamic parameters highlighted the exothermic nature of the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All materials and data generated or analysed during this study are included in this published article.

References

  1. Tortajada C (2020) Contributions of recycled wastewater to clean water and sanitation sustainable development goals. npj Clean Water 3(1). https://doi.org/10.1038/s41545-020-0069-3

  2. Salbitani G, Carfagna S (2021) Ammonium utilization in microalgae: a sustainable method for wastewater treatment. Sustainability 13(2). https://doi.org/10.3390/su13020956

  3. Cheng W-P, Chen P-H, Yu R-F, Ho W-N (2016) Treating ammonium-rich wastewater with sludge from water treatment plant to produce ammonium alum. Sustain Environ Res 26(2):63–69. https://doi.org/10.1016/j.serj.2015.11.002

    Article  CAS  Google Scholar 

  4. Huang J, Kankanamge NR, Chow C, Welsh DT, Li T, Teasdale PR (2018) Removing ammonium from water and wastewater using cost-effective adsorbents: a review. J Environ Sci (China) 63:174–197. https://doi.org/10.1016/j.jes.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Li IC, Chen Y-H, Chen Y-C (2022) Sodium alginate-g-poly(sodium acrylate) hydrogel for the adsorption–desorption of ammonium nitrogen from aqueous solution. J Water Process Eng 49. https://doi.org/10.1016/j.jwpe.2022.102999

  6. Maghfiroh M, Park N, Chang H, Lim H, Kim W (2023) Ammonium removal and recovery from greywater using the combination of ion exchange and air stripping: the utilization of NaOH for the regeneration of natural zeolites. J Water Process Eng 52. https://doi.org/10.1016/j.jwpe.2023.103581

  7. Seruga P, Krzywonos M, Pyzanowska J, Urbanowska A, Pawlak-Kruczek H, Niedzwiecki L (2019) Removal of Ammonia from the municipal waste treatment effluents using natural minerals. Molecules 24(20). https://doi.org/10.3390/molecules24203633

  8. Karri RR, Sahu JN, Chimmiri V (2018) Critical review of abatement of ammonia from wastewater. J Mol Liq 261:21–31. https://doi.org/10.1016/j.molliq.2018.03.120

    Article  CAS  Google Scholar 

  9. Yang Y, Chen Z, Wang X, Zheng L, Gu X (2017) Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment. Bioresour Technol 241:473–481. https://doi.org/10.1016/j.biortech.2017.05.151

    Article  CAS  PubMed  Google Scholar 

  10. Vaiciukyniene D, Mikelioniene A, Baltusnikas A, Kantautas A, Radzevicius A (2020) Removal of ammonium ion from aqueous solutions by using unmodified and H(2)O(2)-modified zeolitic waste. Sci Rep 10(1):352. https://doi.org/10.1038/s41598-019-55906-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. He T, Xie D, Ni J, Li Z, Li Z (2020) Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. J Hazard Mater 388:122114. https://doi.org/10.1016/j.jhazmat.2020.122114

    Article  CAS  PubMed  Google Scholar 

  12. Han B, Butterly C, Zhang W, He J-Z, Chen D (2021) Adsorbent materials for ammonium and ammonia removal: a review. J Clean Prod 283. https://doi.org/10.1016/j.jclepro.2020.124611

  13. Liu Y, Ngo HH, Guo W, Peng L, Wang D, Ni B (2019) The roles of free ammonia (FA) in biological wastewater treatment processes: a review. Environ Int 123:10–19. https://doi.org/10.1016/j.envint.2018.11.039

    Article  CAS  PubMed  Google Scholar 

  14. Sodha V, Shahabuddin S, Gaur R, Ahmad I, Bandyopadhyay R, Sridewi N (2022) Comprehensive review on zeolite-based nanocomposites for treatment of effluents from wastewater. Nanomaterials (Basel) 12(18). https://doi.org/10.3390/nano12183199

  15. Wang S, Peng Y (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chem Eng J 156(1):11–24. https://doi.org/10.1016/j.cej.2009.10.029

    Article  CAS  Google Scholar 

  16. Langwaldt J (2008) Ammonium removal from water by eight natural zeolites: a comparative study. Sep Sci Technol 43(8):2166–2182. https://doi.org/10.1080/01496390802063937

    Article  CAS  Google Scholar 

  17. Vassileva P, Voikova D (2009) Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J Hazard Mater 170(2–3):948–953. https://doi.org/10.1016/j.jhazmat.2009.05.062

    Article  CAS  PubMed  Google Scholar 

  18. Grismer M, Collison R (2017) The zeolite-Anammox treatment process for nitrogen removal from wastewater—a review. Water 9(11). https://doi.org/10.3390/w9110901

  19. Muscarella SM, Badalucco L, Cano B, Laudicina VA, Mannina G (2021) Ammonium adsorption, desorption and recovery by acid and alkaline treated zeolite. Bioresour Technol 341:125812. https://doi.org/10.1016/j.biortech.2021.125812

    Article  CAS  PubMed  Google Scholar 

  20. Yadav V, Rani M, Kumar L, Singh N, Ezhilselvi V (2022) Effect of surface modification of natural zeolite on ammonium ion removal from water using batch study: an overview. Water Air Soil Pollut 233(11). https://doi.org/10.1007/s11270-022-05948-4

  21. Kuronen M, Weller M, Townsend R, Harjula R (2006) Ion exchange selectivity and structural changes in highly aluminous zeolites. React Funct Polym 66(11):1350–1361. https://doi.org/10.1016/j.reactfunctpolym.2006.03.019

    Article  CAS  Google Scholar 

  22. Salmankhani A et al (2021) Adsorption onto zeolites: molecular perspective. Chem Pap 75(12):6217–6239. https://doi.org/10.1007/s11696-021-01817-2

    Article  CAS  Google Scholar 

  23. Sadowska K, Wach A, Olejniczak Z, Kuśtrowski P, Datka J (2013) Hierarchic zeolites: zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Micropor Mesopor Mat 167:82–88. https://doi.org/10.1016/j.micromeso.2012.03.045

    Article  CAS  Google Scholar 

  24. Groen JC, Moulijn JA, Pérez-Ramírez J (2006) Desilication: on the controlled generation of mesoporosity in MFI zeolites. J Mater Chem 16(22):2121–2131. https://doi.org/10.1039/b517510k

    Article  CAS  Google Scholar 

  25. Shen B et al (2012) Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y. Chin J Catal 33(1):152–163. https://doi.org/10.1016/s1872-2067(10)60290-2

    Article  Google Scholar 

  26. Alshameri A et al (2014) An investigation into the adsorption removal of ammonium by salt activated Chinese (Hulaodu) natural zeolite: kinetics, isotherms, and thermodynamics. J Taiwan Inst Chem Eng 45(2):554–564. https://doi.org/10.1016/j.jtice.2013.05.008

    Article  CAS  Google Scholar 

  27. Karadag D, Koc Y, Turan M, Armagan B (2006) Removal of ammonium ion from aqueous solution using natural Turkish clinoptilolite. J Hazard Mater 136(3):604–609. https://doi.org/10.1016/j.jhazmat.2005.12.042

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Yu J, Feng K, Guo H, Wang L (2022) Alkali treatment to transform natural clinoptilolite into zeolite Na–P: influence of NaOH concentration. J Phys Chem Solids 168. https://doi.org/10.1016/j.jpcs.2022.110827

  29. Kurniawan T et al (2022) Catalytic acetalization of glycerol waste over alkali-treated natural clinoptilolite. Results Chem 4. https://doi.org/10.1016/j.rechem.2022.100584

  30. Akgül M, Karabakan A (2011) Promoted dye adsorption performance over desilicated natural zeolite. Micropor Mesopor Mater 145(1–3):157–164. https://doi.org/10.1016/j.micromeso.2011.05.012

    Article  CAS  Google Scholar 

  31. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe Kungliga svenska vetenskapsakademiens. Handlingar 24:1–39

    Google Scholar 

  32. Liu Y et al (2018) Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J Clean Prod 202:11–22. https://doi.org/10.1016/j.jclepro.2018.08.128

    Article  CAS  Google Scholar 

  33. Xie P et al (2021) Bridging adsorption analytics and catalytic kinetics for metal-exchanged zeolites. Nat Catal 4(2):144–156. https://doi.org/10.1038/s41929-020-00555-0

    Article  CAS  Google Scholar 

  34. Taher T et al (2021) Adsorptive removal and photocatalytic decomposition of cationic dyes on niobium oxide with deformed orthorhombic structure. J Hazard Mater 415:125635. https://doi.org/10.1016/j.jhazmat.2021.125635

    Article  CAS  PubMed  Google Scholar 

  35. Taher T et al (2023) Synthesis and characterization of montmorillonite – mixed metal oxide composite and its adsorption performance for anionic and cationic dyes removal. Inorg Chem Commun 147. https://doi.org/10.1016/j.inoche.2022.110231

  36. Hu X et al (2020) Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci Total Environ 707:135544. https://doi.org/10.1016/j.scitotenv.2019.135544

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Palapa NR et al (2020) Copper aluminum layered double hydroxide modified by biochar and its application as an adsorbent for Procion red. J Water Environ Technol 18(6):359–371. https://doi.org/10.2965/jwet.20-059

    Article  Google Scholar 

  38. Medri V, Papa E, Landi E, Maggetti C, Pinelli D, Frascari D (2022) Ammonium removal and recovery from municipal wastewater by ion exchange using a metakaolin K-based geopolymer. Water Res 225:119203. https://doi.org/10.1016/j.watres.2022.119203

    Article  CAS  PubMed  Google Scholar 

  39. Khosravi A, Esmhosseini M, Khezri S (2013) Removal of ammonium ion from aqueous solutions using natural zeolite: kinetic, equilibrium and thermodynamic studies. Res Chem Intermed 40(8):2905–2917. https://doi.org/10.1007/s11164-013-1137-9

    Article  CAS  Google Scholar 

  40. Alshameri A, Ibrahim A, Assabri AM, Lei X, Wang H, Yan C (2014) The investigation into the ammonium removal performance of Yemeni natural zeolite: modification, ion exchange mechanism, and thermodynamics. Powder Technol 258:20–31. https://doi.org/10.1016/j.powtec.2014.02.063

    Article  CAS  Google Scholar 

  41. He W, Gong H, Fang K, Peng F, Wang K (2019) Revealing the effect of preparation parameters on zeolite adsorption performance for low and medium concentrations of ammonium. J Environ Sci (China) 85:177–188. https://doi.org/10.1016/j.jes.2019.05.021

    Article  CAS  PubMed  Google Scholar 

  42. Fu H et al (2020) Ammonium removal using a calcined natural zeolite modified with sodium nitrate. J Hazard Mater 393:122481. https://doi.org/10.1016/j.jhazmat.2020.122481

    Article  CAS  PubMed  Google Scholar 

  43. Doekhi-Bennani Y, Leilabady NM, Fu M, Rietveld LC, van der Hoek JP, Heijman SGJ (2021) Simultaneous removal of ammonium ions and sulfamethoxazole by ozone regenerated high silica zeolites. Water Res 188:116472. https://doi.org/10.1016/j.watres.2020.116472

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Guo X (Nov 2020) Adsorption isotherm models: classification, physical meaning, application and solving method. Chemosphere 258:127279. https://doi.org/10.1016/j.chemosphere.2020.127279

    Article  CAS  PubMed  Google Scholar 

  45. Kalam S, Abu-Khamsin SA, Kamal MS, Patil S (2021) Surfactant adsorption isotherms: a review. ACS Omega 6(48):32342–32348. https://doi.org/10.1021/acsomega.1c04661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Taher T, Irianty Y, Mohadi R, Said M, Andreas R, Lesbani A (2019) Adsorption of cadmium(II) using Ca/Al layered double hydroxides intercalated with Keggin ion. Indones J Chem 19(4). https://doi.org/10.22146/ijc.36447

  47. Widiastuti N, Wu H, Ang HM, Zhang D (2011) Removal of ammonium from greywater using natural zeolite. Desalination 277(1–3):15–23. https://doi.org/10.1016/j.desal.2011.03.030

    Article  CAS  Google Scholar 

  48. Lesbani A, Palapa NR, Sayeri RJ, Taher T, Hidayati N (2021) High reusability of NiAl LDH/biochar composite in the removal methylene blue from aqueous solution. Indones J Chem 21(2). https://doi.org/10.22146/ijc.56955

  49. Gagliano E et al (2022) Removal of ammonium from wastewater by zeolite synthetized from volcanic ash: batch and column tests. J Environ Chem Eng 10(3). https://doi.org/10.1016/j.jece.2022.107539

Download references

Acknowledgments

The authors would like to express their deepest gratitude to PT. Paragon Perdana Mining for generously supplying the zeolite samples used in this study. Their support played a crucial role in the successful completion of this research.

Funding

This research has no funding.

Author information

Authors and Affiliations

Authors

Contributions

Tarmizi Taher: Writing-Original Draft, Writing-Review & Editing, Conceptualization. Elisabeth Kartini Arum Melati: Investigation. Melany Febrina: Funding acquisition. Sena Maulana: Funding acquisition. Meezan Ardhanu Asagabaldan: Funding acquisition. Aditya Rianjanu: Writing-Review & Editing. Aldes Lesbani: Supervision. Rino R. Mukti: Supervision.

Corresponding author

Correspondence to Tarmizi Taher.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taher, T., Melati, E.K.A., Febrina, M. et al. Effect of Desilication on Indonesian Natural Zeolite for the Enhancement of Ammonium Ion Removal from Aqueous Solutions. Silicon 16, 1309–1319 (2024). https://doi.org/10.1007/s12633-023-02758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02758-z

Keywords

Navigation