Skip to main content

Advertisement

Log in

Exploring the Effects of Ball Milling and Microwave Sintering on Microstructural and Mechanical Behavior of AA7075/SiC/ZrO2 Hybrid Composites

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Particle reinforced metal matrix composites, owing to their superior performance compared to their parent alloys, are currently in high demand across industrial sectors. This study aimed to enhance the performance of the base alloy by fabricating an AA7075/SiC/ZrO2 hybrid composite utilizing microwave energy. Ball milling was employed to effectively disperse the reinforcements within the matrix material. The incorporation of SiC reinforcement led to noticeable improvements in mechanical properties up to the critical weight fraction. However, significant enhancements in mechanical properties were observed upon introducing ZrO2 into the matrix material. The composite achieved remarkable mechanical strength, with compression and hardness values reaching 345 MPa and 140 HV, respectively, when a composition of 7% SiC and 3% ZrO2 was integrated into the AA7075 matrix. Furthermore, during attempts to disperse higher reinforcement content levels with extended ball milling durations, non-uniform strains were noted in the SiC particles, indicating lattice defects that may contribute to the generation of intermetallic compounds, even within the microwave sintering process. Composite processed at 8% SiC content levels with extended ball milling showed a decreased trend in its mechanical properties, noted a strength of 272 MPa in compression. This research highlights the potential for tailoring advanced composites with enhanced mechanical properties for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Manohar G, Dey A, Pandey KM, Maity SR (2018) Fabrication of metal matrix composites by powder metallurgy: a review. AIP Conference Proceedings vol 1952. American Institute of Physics Inc. https://doi.org/10.1063/1.5032003

  2. Surya MS, Gugulothu SK (2021) Fabrication, mechanical and wear characterization of silicon carbide reinforced aluminium 7075 metal matrix composite. Silicon. https://doi.org/10.1007/s12633-021-00992-x

  3. Cabeza M, Feijoo I, Merino P, Pena G, Pérez MC, Cruz S, Rey P (2017) Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite. Powder Technol 321:31–43. https://doi.org/10.1016/j.powtec.2017.07.089

  4. Prakash J, Gopalakannan S, Chakravarthy VK (2021) Mechanical characterization studies of aluminium alloy 7075 based nanocomposites. Silicon. https://doi.org/10.1007/s12633-021-00979-8

  5. Ramachandran K, Gnanasagaran CL, Subramani RR, Boopalan V, Arunkumar T (2023) Influence of ceramic nanoparticles on fatigue life of Al 6061 prepared via ultrasonic aided rheo- squeeze casting process. Adv Mater Process Technol 1–14. https://doi.org/10.1080/2374068X.2023.2205673

  6. Mohanavel V, Rajan K, Kumar SS, Udishkumar S, Jayasekar C (2018) Effect of silicon carbide reinforcement on mechanical and physical properties of aluminum matrix composites. Mater Today Proc 5:2938–2944. https://doi.org/10.1016/j.matpr.2018.01.089

    Article  CAS  Google Scholar 

  7. Arunkumar T, Selvakumaran T, Subbiah R, Ramachandran K, Manickam S (2021) Development of high-performance aluminium 6061/SiC nanocomposites by ultrasonic aided rheo-squeeze casting method. Ultrason Sonochem 76:105631. https://doi.org/10.1016/J.ULTSONCH.2021.105631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sivasankaran S, Sivaprasad K, Narayanasamy R, Iyer VK (2010) Synthesis, structure and sinterability of 6061 AA100-x-x wt.% TiO2 composites prepared by high-energy ball milling. J Alloys Compd 491:712–721. https://doi.org/10.1016/j.jallcom.2009.11.051

    Article  CAS  Google Scholar 

  9. Fan G, Jiang Y, Tan Z, Guo Q, Xiong D bang, Su Y, Lin R, Hu L, Li Z, Zhang D (2018) Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon NY 130:333–9. https://doi.org/10.1016/j.carbon.2018.01.037

  10. Adriano VSR, Martínez JMG, Ferreira JLA, Araújo JA, da Silva CRM (2018) The influence of the fatigue process zone size on fatigue life estimations performed on aluminum wires containing geometric discontinuities using the Theory of Critical Distances. Theor Appl Fract Mech 97:265–278. https://doi.org/10.1016/J.TAFMEC.2018.09.002

    Article  CAS  Google Scholar 

  11. Manohar G, Pandey KM, Maity SR (2021) Effect of china clay on mechanical properties of AA7075/B4C hybrid composite fabricated by powder metallurgy techniques. Mater Today Proc 45:6321–6326. https://doi.org/10.1016/J.MATPR.2020.10.740

    Article  CAS  Google Scholar 

  12. Reddy MP, Manakari V, Parande G, Shakoor RA, Mohamed AMA, Gupta M (2019) Structural, mechanical and thermal characteristics of Al-Cu-Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion. Compos Part B Eng 164:485–492. https://doi.org/10.1016/j.compositesb.2019.01.063

    Article  CAS  Google Scholar 

  13. Zhang YF, Lu L, Yap SM (1999) Prediction of the amount of PCA for mechanical milling. J Mater Process Technol 89–90:260–265. https://doi.org/10.1016/S0924-0136(99)00042-4

    Article  Google Scholar 

  14. Hu ZY, Zhang ZH, Cheng XW, Wang FC, Zhang YF, Li SL (2020) A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications. Mater Des 191:108662. https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  15. Manohar G, Pandey KM, Maity SR (2021) Characterization of Boron Carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques – A review. Mater Today Proc 45:6882–6888. https://doi.org/10.1016/j.matpr.2020.12.1087

    Article  CAS  Google Scholar 

  16. Karabulut Ş, Karakoç H, Çıtak R (2016) Influence of B4C particle reinforcement on mechanical and machining properties of Al6061/B4C composites. Compos Part B Eng 101:87–98. https://doi.org/10.1016/j.compositesb.2016.07.006

    Article  CAS  Google Scholar 

  17. Pakdel A, Witecka A, Rydzek G, Awang Shri DN (2017) A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering. Mater Des 119:225–234. https://doi.org/10.1016/j.matdes.2017.01.064

    Article  CAS  Google Scholar 

  18. Kamboj A, Kumar S, Singh H (2013) Fabrication and characterization of Al6063/SiC composites. Proc Inst Mech Eng Part B J Eng Manuf 227:1777–87. https://doi.org/10.1177/0954405413493618

  19. Melaibari A, Fathy A, Mansouri M, Eltaher MA (2019) Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites. J Alloys Compd 774:1123–1132. https://doi.org/10.1016/j.jallcom.2018.10.007

    Article  CAS  Google Scholar 

  20. Chen M, Fan G, Tan Z, Yuan C, Xiong D, Guo Q, Su Y, Naito M, Li Z (2019) Tailoring and characterization of carbon nanotube dispersity in CNT/6061Al composites. Mater Sci Eng A 757:172–181. https://doi.org/10.1016/j.msea.2019.04.093

    Article  CAS  Google Scholar 

  21. Manohar G, Pandey KM, Maity SR (2021) Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram Int 47:15147–15154. https://doi.org/10.1016/j.ceramint.2021.02.073

    Article  CAS  Google Scholar 

  22. Manohar G, Pandey KM, Maity SR (2022) Effect of spark plasma sintering on microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nanocomposite fabricated by powder metallurgy techniques. Mater Chem Phys 126000. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126000

  23. Varol T, Canakci A (2013) Effect of particle size and ratio of B4C reinforcement on properties and morphology of nanocrystalline Al2024-B4C composite powders. Powder Technol 246:462–72. https://doi.org/10.1016/j.powtec.2013.05.048

  24. Manohar G, Pandey KM, Ranjan Maity S (2021) Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques. Mater Today Proc 38:2157–61. https://doi.org/10.1016/J.MATPR.2020.05.194

  25. Ramanathan A, Krishnan PK, Muraliraja R (2019) A review on the production of metal matrix composites through stir casting – Furnace design, properties, challenges, and research opportunities. J Manuf Process 42:213–245. https://doi.org/10.1016/j.jmapro.2019.04.017

    Article  Google Scholar 

  26. Rahman MH, Al Rashed HMM (2014) Characterization of silicon carbide reinforced aluminum matrix Composites. Procedia Eng 90:103–109. https://doi.org/10.1016/j.proeng.2014.11.821

    Article  CAS  Google Scholar 

  27. Alizadeh A, Taheri-Nassaj E, Baharvandi HR (2011) Preparation and investigation of Al-4 wt% B4C nanocomposite powders using mechanical milling. Bull Mater Sci 34:1039–1048. https://doi.org/10.1007/s12034-011-0158-5

    Article  CAS  Google Scholar 

  28. Gupta RK, Ravi KR, Udhayabanu V, Peshwe DR (2022) Effect of ultrasonic treatment on microstructural and mechanical properties of Al 7075/Grp composite. Mater Chem Phys 281:125905. https://doi.org/10.1016/j.matchemphys.2022.125905

  29. Okumuş M, Bülbül B (2022) Study of microstructural, mechanical, thermal and tribological properties of graphene oxide reinforced Al–10Ni metal matrix composites prepared by mechanical alloying method. Wear 510–511. https://doi.org/10.1016/j.wear.2022.204511

  30. Fan G, Huang H, Tan Z, Xiong D, Guo Q, Naito M, Li Z, Zhang D (2017) Grain refinement and superplastic behavior of carbon nanotube reinforced aluminum alloy composite processed by cold rolling. Mater Sci Eng A 708:537–43. https://doi.org/10.1016/j.msea.2017.10.031

  31. Nemati N, Khosroshahi R, Emamy M, Zolriasatein A (2011) Investigation of microstructure, hardness and wear properties of Al-4.5wt.% Cu-TiC nanocomposites produced by mechanical milling. Mater Des 32:3718–29. https://doi.org/10.1016/j.matdes.2011.03.056

  32. Prasad Reddy A, Vamsi Krishna P, Rao RN (2019) Tribological behaviour of Al6061–2SiC-xGr Hybrid metal matrix nanocomposites fabricated through ultrasonically assisted stir casting technique. Silicon 11:2853–71. https://doi.org/10.1007/s12633-019-0072-9

  33. Bhattacharya M, Basak T (2016) A review on the susceptor assisted microwave processing of materials. Energy 97:306–338. https://doi.org/10.1016/j.energy.2015.11.034

    Article  Google Scholar 

  34. Manohar G, Pandey KM, Maity SR (2021) Effect of microwave sintering on the microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nano composite fabricated by powder metallurgy techniques. Ceram Int 47:32610–32618. https://doi.org/10.1016/j.ceramint.2021.08.156

    Article  CAS  Google Scholar 

  35. Ağaoğulları D (2019) Effects of ZrC content and mechanical alloying on the microstructural and mechanical properties of hypoeutectic Al-7 wt.% Si composites prepared by spark plasma sintering. Ceram Int 45:13257–68. https://doi.org/10.1016/j.ceramint.2019.04.013

  36. Song MS, Huang B, Zhang MX, Li JG (2009) In situ synthesis of ZrC particles and its formation mechanism by self-propagating reaction from Al-Zr-C elemental powders. Powder Technol 191:34–38. https://doi.org/10.1016/j.powtec.2008.09.005

    Article  CAS  Google Scholar 

  37. Agaogullari D, Gökçe H, Genç A, Duman I, Öveçoglu ML (2010) Characterization of mechanically alloyed and sintered zrc particulate reinforced al matrix composites. 19th International Conference on Metallurgy and Materials. Roznov Pod Radhostem, Czech Republic, pp 702–8

    Google Scholar 

  38. Reddy MP, Ubaid F, Shakoor RA, Mohamed AMA (2018) Microstructure and mechanical behavior of microwave sintered Cu50Ti50 amorphous alloy reinforced Al metal matrix composites. JOM 70:817–22. https://doi.org/10.1007/s11837-018-2831-2

  39. Mattli MR, Matli PR, Khan A, Abdelatty RH, Yusuf M, Ashraf A Al, Kotalo RG, Shakoor RA (2021) Study of microstructural and mechanical properties of Al/SiC/TiO2 hybrid nanocomposites developed by microwave sintering. Crystals 11:1078. https://doi.org/10.3390/cryst11091078

  40. Mattli MR, Khan A, Matli PR, Yusuf M, Al AA, Shakoor RA, Gupta M (2020) Effect of Inconel625 particles on the microstructural, mechanical, and thermal properties of Al-Inconel625 composites. Mater Today Commun 25:101564. https://doi.org/10.1016/j.mtcomm.2020.101564

    Article  CAS  Google Scholar 

  41. Matli PR, Manakari V, Parande G, Mattli MR, Shakoor RA, Gupta M (2020) Improving mechanical, thermal and damping properties of niti (Nitinol) reinforced aluminum nanocomposites. J Compos Sci 4:18–21. https://doi.org/10.3390/jcs4010019

    Article  CAS  Google Scholar 

  42. Mohammed H, Penchal Reddy M, Ubaid F, Shakoor A, Mohamed AMA (2018) Structural and mechanical properties of CeO2 reinforced Al matrix nanocomposites. Adv Mater Lett 9:602–5. https://doi.org/10.5185/amlett.2018.2030

  43. Manohar G, Pandey KM, Maity SR (2022) Effect of variations in microwave processing temperatures on microstructural and mechanical properties of AA7075/SiC/Graphite hybrid composite fabricated by powder metallurgy techniques. Silicon 14:7831–47. https://doi.org/10.1007/s12633-021-01554-x

  44. Saravana Kumar M, Pruncu CI, Harikrishnan P, Rashia Begum S, Vasumathi M (2021) Experimental investigation of in-homogeneity in particle distribution during the processing of metal matrix composites. Silicon. https://doi.org/10.1007/s12633-020-00886-4

    Article  Google Scholar 

  45. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) Chemical reactivity of aluminium with boron carbide. J Mater Sci 32:4559–73. https://doi.org/10.1023/A:1018625402103

  46. Sarkari Khorrami M, Samadi S, Janghorban Z, Movahedi M (2015) In-situ aluminum matrix composite produced by friction stir processing using FE particles. Mater Sci Eng A 641:380–90. https://doi.org/10.1016/j.msea.2015.06.071

  47. Ibrahim MF, Ammar HR, Samuel AM, Soliman MS, Samuel FH (2015) On the impact toughness of Al-15 vol.% B4C metal matrix composites. Compos Part B Eng 79:83–94. https://doi.org/10.1016/j.compositesb.2015.04.018

  48. Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  49. Mobasherpour I, Tofigh AA, Ebrahimi M (2013) Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying. Mater Chem Phys 138:535–541. https://doi.org/10.1016/j.matchemphys.2012.12.015

    Article  CAS  Google Scholar 

  50. Chen YS, Chen TJ, Zhang SQ, Li PB (2015) Effect of ball milling on microstructural evolution during partial remelting of 6061 aluminum alloy prepared by cold-pressing of alloy powders. Trans Nonferrous Met Soc China (English Ed) 25:2113–21. https://doi.org/10.1016/S1003-6326(15)63822-5

  51. Ashwath P, Anthony Xavior M (2014) The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Eng 97:1027–1032. https://doi.org/10.1016/j.proeng.2014.12.380

    Article  CAS  Google Scholar 

  52. Sivasankaran S, Sivaprasad K, Narayanasamy R, Satyanarayana PV (2011) X-ray peak broadening analysis of AA 6061100–x-x wt.% Al 2O3 nanocomposite prepared by mechanical alloying. Mater Charact 62:661–672. https://doi.org/10.1016/j.matchar.2011.04.017

    Article  CAS  Google Scholar 

  53. Lu L, Lai MO, Zhang S (1997) Diffusion in mechanical alloying. J Mater Process Technol 67:100–104. https://doi.org/10.1016/S0924-0136(96)02826-9

    Article  Google Scholar 

  54. Contreras A, Bedolla E, Pérez R (2004) Interfacial phenomena in wettability of TiC by Al-Mg alloys. Acta Mater 52:985–994. https://doi.org/10.1016/j.actamat.2003.10.034

    Article  CAS  Google Scholar 

  55. Zhang L, Shi G, Xu K, Hao W, Li Q, Junyan W, Wang Z (2020) Phase transformation and mechanical properties of B4C/Al composites. J Mater Res Technol 9:2116–2126. https://doi.org/10.1016/j.jmrt.2019.12.042

    Article  CAS  Google Scholar 

  56. Bisht A, Srivastava M, Kumar RM, Lahiri I, Lahiri D (2017) Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A 695:20–28. https://doi.org/10.1016/j.msea.2017.04.009

    Article  CAS  Google Scholar 

  57. Lai J, Zhang Z, Chen XG (2013) Precipitation strengthening of Al-B4C metal matrix composites alloyed with Sc and Zr. J Alloys Compd 552:227–235. https://doi.org/10.1016/j.jallcom.2012.10.096

    Article  CAS  Google Scholar 

  58. Alhashmy HA, Nganbe M (2015) Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater Des 67:154–158. https://doi.org/10.1016/j.matdes.2014.11.034

    Article  CAS  Google Scholar 

  59. Xiu ZY, Chen GQ, Wu GH, Yang WS, Liu YM (2011) Effect of volume fraction on microstructure and mechanical properties of Si3N4/Al composites. Trans Nonferrous Met Soc China (English Ed) 21:s285–9. https://doi.org/10.1016/S1003-6326(11)61592-6

  60. Singh N, Belokar RM, Walia RS (2020) A critical review on advanced reinforcements and base materials on hybrid metal matrix composites. Silicon. https://doi.org/10.1007/s12633-020-00853-z

    Article  Google Scholar 

  61. Fenghong C, Chang C, Zhenyu W, Muthuramalingam T, Anbuchezhiyan G (2019) Effects of silicon carbide and tungsten carbide in aluminium metal matrix composites. Silicon 11:2625–2632. https://doi.org/10.1007/s12633-018-0051-6

    Article  CAS  Google Scholar 

  62. Reddy PS, Kesavan R, VijayaRamnath B (2018) Investigation of mechanical properties of aluminium 6061-silicon carbide boron carbide metal matrix composite. Silicon 10:495–502. https://doi.org/10.1007/s12633-016-9479-8

    Article  CAS  Google Scholar 

  63. Surya MS, Prasanthi G (2021) Effect of SiC weight percentage on tribological characteristics of Al7075/SiC composites. Silicon. https://doi.org/10.1007/s12633-020-00885-5

  64. Yang C, Mo DG, Lu HZ, Li XQ, Zhang WW, Fu ZQ, Zhang LC, Lavernia EJ (2017) Reaction diffusion rate coefficient derivation by isothermal heat treatment in spark plasma sintering system. Scr Mater 134:91–94. https://doi.org/10.1016/j.scriptamat.2017.03.005

    Article  CAS  Google Scholar 

  65. Manohar G, Pandey KM, Maity SR (2022) Effect of spark plasma sintering on microstructure and mechanical properties of AA7075/B4C/ZrC hybrid nanocomposite fabricated by powder metallurgy techniques. Mater Chem Phys 282:126000. https://doi.org/10.1016/j.matchemphys.2022.126000

    Article  CAS  Google Scholar 

  66. Jiang LT, Chen GQ, He XD, Zhao M, Xiu ZY, Fan RJ, Wu GH (2009) Microstructure and tensile properties of TiB2p/6061Al composites. Trans Nonferrous Met Soc China (English Ed) 19. https://doi.org/10.1016/S1003-6326(10)60105-7

  67. Wu C, Wu J, Ma K, Zhang D, Xiong S, Zhang J, Luo G, Chen F, Shen Q, Zhang L, Lavernia EJ (2017) Synthesis of AA7075-AA7075/B4C bilayer composite with enhanced mechanical strength via plasma activated sintering. J Alloys Compd 701:416–424. https://doi.org/10.1016/j.jallcom.2017.01.065

    Article  CAS  Google Scholar 

  68. Patil A, Nartu MSKKY, Ozdemir F, Banerjee R, Gupta RK, Borkar T (2021) Strengthening effects of multi-walled carbon nanotubes reinforced nickel matrix nanocomposites. J Alloys Compd 876:159981. https://doi.org/10.1016/j.jallcom.2021.159981

  69. Manohar G, Pandey KM, Maity SR (2021) Effect of processing parameters on mechanical properties of Al7175/Boron Carbide (B4C) Composite fabricated by powder metallurgy techniques. Materials, Computer Engineering and Education Technology Advances in Science and Technology vol 105. Trans Tech Publications Ltd, pp 8–16

  70. Alihosseini H, Dehghani K, Kamali J (2017) Microstructure characterization, mechanical properties, compressibility and sintering behavior of Al-B4C nanocomposite powders. Adv Powder Technol 28:2126–2134. https://doi.org/10.1016/j.apt.2017.05.019

    Article  CAS  Google Scholar 

  71. Zhang Z, Chen DL (2006) Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr Mater 54:1321–1326. https://doi.org/10.1016/j.scriptamat.2005.12.017

    Article  CAS  Google Scholar 

  72. Manohar G, Maity SR, Pandey KM (2021) Microstructural and mechanical properties of microwave sintered AA7075/Graphite/SiC hybrid composite fabricated by powder metallurgy techniques. Silicon. https://doi.org/10.1007/s12633-021-01299-7

  73. Zhao K, Duan Z, Liu J, Kang G, An L (2021) Strengthening mechanisms of 15 vol.% Al2O3 nanoparticles reinforced aluminum matrix nanocomposite fabricated by high energy ball milling and vacuum hot pressing. Acta Metall Sin (English Lett). https://doi.org/10.1007/s40195-021-01306-1

  74. Narayan J (2013) A new mechanism for field-assisted processing and flash sintering of materials. Scr Mater 69:107–111. https://doi.org/10.1016/j.scriptamat.2013.02.020

    Article  CAS  Google Scholar 

Download references

Funding

No Funding available.

Author information

Authors and Affiliations

Authors

Contributions

Guttikonda Manohar: Conceptualization, Methodology, Data curation, Writing- Investigation, Original draft preparation. Adepu Kumar: Reviewing, Editing, Validation, Visualization, and Supervision.

Corresponding author

Correspondence to Guttikonda Manohar.

Ethics declarations

The Authors declare that they don’t have known personal relationships or competing fnancial interest that could have appeared to infuence the work reported in this manuscript.

Competing Interests

The authors declare no competing interests.

Ethical Approval

Ethics Approval All experiments were conducted ethically and no issues regarding ethical issues arouse during the experiments or the manuscript confection.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent to Participate

All the Authors are happily agreeing to contribute in this research work.

Consent for Publication

Consent was obtained from all authors to publish this manuscript. All the authors read and approved this manuscript to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manohar, G., Kumar, A. Exploring the Effects of Ball Milling and Microwave Sintering on Microstructural and Mechanical Behavior of AA7075/SiC/ZrO2 Hybrid Composites. Silicon 16, 2481–2495 (2024). https://doi.org/10.1007/s12633-024-02856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-024-02856-6

Keywords

Navigation