Skip to main content
Log in

Growth of Polycrystalline n- CrSe2 Nanosheets Onto p –Si Substrates and their Applications as Rectifiers and Gigahertz Band Filters

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the current study polycrystalline nanosheets of CrSe2 of thicknesses of 100 nm are deposited onto \(p-\) type silicon substrate by a vacuum evaporation technique under a vacuum pressure of 10–5 mbar. Experimental and theoretical structural investigations have shown the preferred growth of trigonal CrSe2. The unit cell parameters being a = b = 3.520 Å,c = 5.889 Å and \(P\overline{3 }m1 \left(164\right)\) fits well with the standards of trigonal CrSe2 structure. Nanosheets of chromium selenide displayed low defect density of the order of 1010 lines/cm2 along the \(a-\) and \(b\) axes. Surface morphology studies have shown that CrSe2 nanosheets is composed of spherical grains of average sizes of 200 nm. Optically the interfacing of the n– type CrSe2 nanosheets with \(p-\) type Si results in formation of a conduction and valence band offsets of 0.95 eV and 0.47 eV, respectively. These band offsets were found sufficient to allow running the Si/CrSe2 interfaces as \(pn\) junction devices. The devices displayed a biasing dependent rectification ratios (asymmetry). The ratios which reached value of 70 can be varied with the applied voltage. Deep analyses of the current transport mechanism of these rectifiers have shown the domination by thermionic and tunneling mechanisms under forward and reverse biasing conditions, respectively. Moreover the pn junction device showed features of band filters with cutoff frequency values suiting gigahertz technology making the device attractive for multifunction operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang Y, Chu J, Yin L, Shifa TA, Cheng Z, Cheng R, Wang F et al (2019) Ultrathin magnetic 2D single-crystal CrSe. Adv Mater 31(19):1900056

    Article  Google Scholar 

  2. Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q et al (2021) Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat Mater 20(6):818–825

    Article  CAS  PubMed  Google Scholar 

  3. Guo X, Zhu Y, Yang B, Zhang X, Han X, Yan Y (2022) Large tunneling magnetoresistance and low resistance-area product in CrSe2/NiCl2/CrSe2 van der Waals magnetic tunnel junction. Appl Phys Lett 121(4)

  4. Lan Q, Ma Y, Qin T, Yang L, Chen C (2023) Electronic, Optical, and Magnetic Properties of Fe-or Co-Doped 2D 2H-CrSe2. Cryst Res Technol 58(5):2200274

    Article  CAS  Google Scholar 

  5. Jingjing W, Rehman SU, Tariq Z, Zou B, Zhang X, Butt FK, Li C (2023) Two-dimensional CrSe2/GaN heterostructures for visible-light photocatalysis with high utilization of solar energy. Int J Hydr Energ 51:382–395

    Google Scholar 

  6. Tezel FM, AfşinKariper İ (2018) A new process to synthesize CrSe thin films with nanosize by CBD method. Mater Res Express 6(3):036412

    Article  Google Scholar 

  7. Kariper IA (2017) Synthesis and characterization of CrSe thin film produced via chemical bath deposition. Opt Rev 24:139–146

    Article  CAS  Google Scholar 

  8. Kariper IA (2015) Optical and structural properties of CrSe thin film with chemical bath deposition. J Non-Oxide Glass 7(3):37–44

    Google Scholar 

  9. Aljaloud ASM, Qasrawi AF, Alfhaid LHK (2023) Growth and characterization of chromium selenide thin films for optoelectronic applications, Optical and Quantum Electronics, Accepted 2023. 5266d648-cb47–4bf0-a2b4–3fac7e1b9fa0

  10. Khalid ALH, Qasrawi AF (2023) Au/CrSe stacked layers designed as optical absorbers, tunneling barriers and negative capacitance sources. Mater Today Communic 37:107006

    Article  Google Scholar 

  11. Almotiri RA, Qasrawi AF, Algarni SE (2022) Ag/n–Si/p–MgSe/(Ag, C, Au, Pt) devices designed as current rectifiers, photodetectors and as AC signal filters suitable for VLC, IR and 6G technologies. Physica Scripta 97(12):125811

    Article  CAS  Google Scholar 

  12. Raj KAS, Narad Barman K, Namsheer RT, Rout CS (2022) CrSe 2/Ti 3 C 2 MXene 2D/2D hybrids as promising candidates for energy storage applications. Sustain Energ Fuels 6(22):5187–5198

    Article  Google Scholar 

  13. Cai Y, Ye Y, Li P, Zhou Y, Liu J, Tian Z, Yang Z, Liang C (2019) Pressure induced semiconductor-metallic transition of selenium nanoribbons generated by laser ablation in liquids. Appl Surf Sci 473:564–570

    Article  CAS  Google Scholar 

  14. Aljaloud ASM, Qasrawi AF, Alfhaid LHK (2023) Effects of Pb nanosheets substrates on the optical and electrical properties CrSe thin films. Physica Scripta 98:115950

    Article  Google Scholar 

  15. Li Z, Krieft J, Singh AV, Regmi S, Rastogi A, Srivastava A, Galazka Z, Mewes T, Gupta A, Kuschel T (2019) Vectorial observation of the spin Seebeck effect in epitaxial NiFe2O4 thin films with various magnetic anisotropy contributions. Appl Phys Lett 114(23)

  16. Guo Y, Luo W, Zhang J, Wenbing Hu (2023) Dynamic Monte Carlo simulations of strain-induced crystallization in multiblock copolymers: effects of microphase separation. Polymer 264:125512

    Article  CAS  Google Scholar 

  17. Qasrawi AF, Baniowdah TS, Abu LO, Samen A (2022) Au nanosheets-assisted structural phase transitions, in situ monitoring of the enhanced crystallinity, and their effect on the optical and dielectric properties of CuSe/Au/CuSe thin films. Cryst Res Technol 57(6):2100237

    Article  CAS  Google Scholar 

  18. Barrón-López JF, Bolarín-Miró A, Sánchez De-Jesús F, Alvarez G, Gómez-Vidal V, Montiel H (2021) Magnetization Dynamics Behavior in Y 3 Fe 5 O 12 Particles. J Superconduct Nov Magnet 34:551–559

    Article  Google Scholar 

  19. Aftab M, AsmaAftab MZ, Butt DA, Bashir F, Iqbal SS (2023) Surface hardness of pristine and laser-treated zinc as a function of indentation load and its correlation with crystallite size valued by Williamson-Hall analysis, size-strain plot, Halder-Wagner and Wagner-Aqua model. Mater Chem Phys 295:127117

    Article  CAS  Google Scholar 

  20. Wang J, Hao Wu, Liu Z, Pan M, Huang Z, Pan L, Han L, Zhang K, Zhao Y, Deng H (2022) Theoretically evaluating two-dimensional tetragonal Si 2 Se 2 and SiSe 2 nanosheets as anode materials for alkali metal-ion batteries. Phys Chem Chem Phys 24(42):26241–26253

    Article  CAS  PubMed  Google Scholar 

  21. Alharbi SR, Qasrawi AF, Algarni SE (2022) Growth and characterization of (glass, Ag)/SeO2 thin films. Physica B: Condensed Matt 633:413790

    Article  CAS  Google Scholar 

  22. Neimash VB, Shepelyavyi PE, Nikolenko AS, Strelchuk VV, Chegel VI, Olkhovyk IV, Voronov SO (2023) The role of tin in the formation of micro-and nano-structured surfaces of layered Si–Sn–Si films. Ukrain J Phys 68(4):284–291

    Article  Google Scholar 

  23. Elashmawy AW, Shalaby HMH, Aly MH (2022) Random DFB-FL using apodized FBG and DFB-FL optical filters: a numerical performance evaluation. Optical and Quantum Electronics 54:1–18

    Article  Google Scholar 

  24. Alkhamisi MM, Qasrawi AF, Khanfar HK, Algarni SE (2023) Pt/PbSe optoelectronic receivers designed for 6G and terahertz communication technologies.". Optical and Quantum Electronics 55(2):156

    Article  Google Scholar 

  25. Nwofe AP, Sugiyama M (2020) Microstructural, optical, and electrical properties of chemically deposited tin antimony sulfide thin films for use in optoelectronic devices. Physica status solidi 217(9):1900881

    Article  Google Scholar 

  26. Cao S, Li J, Zhang J, Lin Y, Linfeng Lu, Wang J, Yin M, Yang L, Chen X, Li D (2020) Stable MoOX-based Heterocontacts for p-type crystalline silicon Solar cells achieving 20% efficiency. Adv Func Mater 30(49):2004367

    Article  CAS  Google Scholar 

  27. Nishikawa S, Hashimoto H, Chikamoto M, Horikoshi K, Aoki M, Arima K, Uchikosi J, Morita M (2006) Photo current through SnO2/SiC/p-Si (100) structures. Thin Solid Films 508(1–2):385–388

    Article  CAS  Google Scholar 

  28. Tsai Y-C, Bayram C (2020) Band alignments of ternary wurtzite and zincblende III-nitrides investigated by hybrid density functional theory. ACS Omega 5(8):3917–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang C-Y, Lee S, Cohen-Elias D, Law JJM, Carter AD, Chobpattana V, Stemmer S, Gossard, AC MJW Rodwell (2013) Reduction of leakage current in In0. 53Ga0. 47As channel metal-oxide-semiconductor field-effect-transistors using AlAs0. 56Sb0. 44 confinement layers.  Appl Phys Lett 103(20)

  30. Qasrawi A, Khanfar H (2023) Effect of Ag 2 O nanosheets thickness on the performance of Al/GeO 2/Ag 2 O/GeO 2/C multifunctional electronic devices. J  Arab Am Univ 9(1) 

  31. Madelung, Otfried. Semiconductors: data handbook. Springer Science & Business Media, 2004

  32. Sadhukhan P, Das S (2019) Photo detector based on graded band gap perovskite crystal. Sol Energy 194:563–568

    Article  CAS  Google Scholar 

  33. Turt A (2020) On current-voltage and capacitance-voltage characteristics of metal-semiconductor contacts. Turk J Phys 44(4):302–347

    Article  Google Scholar 

  34. Efeoǧlu H, Turut A (2023) Thermal sensing capability and current–voltage–temperature characteristics in Pt/n-GaP/Al/Ti Schottky diodes. J Vac Sci Technol B 41(2)

  35. Huang Z, Zhang Y, Wang H, Li J (2023) Improved electrical resistivity-temperature characteristics of oriented hBN composites for inhibiting temperature-dependence DC surface breakdown. Appl Phys Lett 123(10)

  36. Yang Y, Zhang Z, Zhou Y, Wang Ce, Zhu H (2022) Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans Microw Theory Tech 71(2):907–915

    Article  Google Scholar 

  37. Chung KL, Tian H, Wang S, Feng B, Lai G (2022) Miniaturization of microwave planar circuits using composite microstrip/coplanar-waveguide transmission lines. Alex Eng J 61(11):8933–8942

    Article  Google Scholar 

  38. Huang X, Zhang X, Zhou L, Jin-Xu Xu, Mao J-F (2022) Low-Loss Self-Packaged Ka-Band LTCC Filter using artificial multimode SIW resonator. IEEE Trans Circuits Syst II Express Briefs 70(2):451–455

    Google Scholar 

  39. Shi J, Li Z, Jia J, Li Z, Shen C, Zhang J, Chi N (2023) Waveform-to-waveform end-to-end learning framework in a seamless fiber-terahertz integrated communication system. J Lightwave Technol 41(8):2381–2392

    Article  Google Scholar 

  40. Wang Y, Chen P, Yong J, Wilsun Xu, Shuangting Xu, Liu Ke (2022) A comprehensive investigation on the selection of high-pass harmonic filters. IEEE Trans Power Del 37(5):4212–4226

    Article  Google Scholar 

  41. Dai M, Luo L, Ren J, Hongfang Yu, Sun G (2022) Psaccf: Prioritized online slice admission control considering fairness in 5g/b5g networks. IEEE Trans Netw Sci Eng 9(6):4101–4114

    Article  Google Scholar 

  42. Huimin W, Zhiliang X, Ge X, Liao Y, Yang Y, Zhang Y, Yao B, Chai Y (2023) A junction temperature monitoring method for IGBT modules based on turn-off voltage with convolutional neural networks. IEEE Trans Power Electron 38:10313–10328

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-DR-47). Therefore, the authors thank the University of Jeddah for its technical and financial support .

Funding

This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-DR-47). Therefore, the authors thank the University of Jeddah for its technical and financial support.

Author information

Authors and Affiliations

Authors

Contributions

S. E. AlGarni win the project. She analyzed the optical part and prepared a literature review on the topic. Prof Najla Khusayfan also win the project and shared effectively in optical data analyses.  Qasrawi AF handled experiments and collected optical and electrical data analysis and shared in all other parts including article editing and reviewing, and carried out the modeling.

Corresponding author

Correspondence to A. F. Qasrawi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All authors participated in the work.

Consent for Publication

All authors agree to publish this article in the Journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algarni, S.E., Qasrawi, A.F. & Khusayfan, N.M. Growth of Polycrystalline n- CrSe2 Nanosheets Onto p –Si Substrates and their Applications as Rectifiers and Gigahertz Band Filters. Silicon 16, 2341–2348 (2024). https://doi.org/10.1007/s12633-023-02842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02842-4

Keywords

Navigation