Skip to main content
Log in

Simulation of Planar Heterojunction CH3NH3PbI3 Solar Cell Employing SiGeSn Alloy as a Backplane

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Present day perovskite solar cells aim is to achieve high photovoltaic efficiency with low fabrication cost. To achieve these objectives, SiGeSn group IV material has been employed as a backplane in the perovskite solar cells. In this work, we present the design of MgF2/FTO/SnO2/CH3NH3PbI3/SiGe/Spiro-OMeTAD/SiGeSn/Au solar cell structure. The main focus of the present work is on the group IV alloy (SiGeSn) as a backplane which enhances the back reflectivity, reduces the photon absorption rate and ensuring the high quantum efficiency. According to the results, the optimal PCE of the proposed perovskite solar cell has been obtained due to the proper selection of material for backplane such as SiGeSn which has a potential to reduce the photon absorption rate though promising the higher efficiency. The effect of thickness of perovskite layer and doping of different layers have been investigated against various performance parameters. Efficiency of more than 26% has been achieved by the integration of these layers, combined with the proper selection of layer thicknesses and their doping concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

NA.

References

  1. Sherkar TS, Momblona C, Gil-Escrig L et al (2017) Improving perovskite solar cells: insights from a validated device model. Adv Energy Mater 7 https://doi.org/10.1002/aenm.201602432

  2. Zhao P, Lin Z, Wang J et al (2019) Numerical simulation of planar heterojunction perovskite solar cells based on SnO2 electron transport layer. ACS Appl Energy Mater 2:4504–4512. https://doi.org/10.1021/acsaem.9b00755

    Article  CAS  Google Scholar 

  3. Bag A, Pandey R, Kashyap S et al (2022) The influence of top electrode work function on the performance of methylammonium lead iodide based perovskite solar cells having various electron transport layers. Chem Phys Lett 806:140009. https://doi.org/10.1016/j.cplett.2022.140009

    Article  CAS  Google Scholar 

  4. Alipour H, Ghadimi A (2021) Optimization of lead-free perovskite solar cells in normal-structure with WO3 and water-free PEDOT: PSS composite for hole transport layer by SCAPS-1D simulation. Opt Mater 120:111432. https://doi.org/10.1016/j.optmat.2021.111432

    Article  CAS  Google Scholar 

  5. Malinkiewicz O, Yella A, Lee YH et al (2014) Perovskite solar cells employing organic charge-transport layers. Nat Photonics 8:128–132. https://doi.org/10.1038/nphoton.2013.341

    Article  ADS  CAS  Google Scholar 

  6. Jiang Z, Zhang W, Lu C et al (2018) Enhanced photovoltaic performance of CH3NH3PbBrXI3-X-based perovskite solar cells via anti-solvent extraction. Superlattices Microstruct 118:79–91. https://doi.org/10.1016/j.spmi.2018.03.081

    Article  ADS  CAS  Google Scholar 

  7. Chang J, Lin Z, Zhu H et al (2016) Enhancing the photovoltaic performance of planar heterojunction perovskite solar cells by doping the perovskite layer with alkali metal ions. J Mater Chem A 4:16546–16552. https://doi.org/10.1039/c6ta06851k

    Article  CAS  Google Scholar 

  8. Kashyap S, Madan J, Mohammed MKA et al (2023) Unlocking the potential of MgF2 textured surface in enhancing the efficiency of perovskite solar cells. Mater Lett 339:134096. https://doi.org/10.1016/j.matlet.2023.134096

    Article  CAS  Google Scholar 

  9. Rai S, Pandey BK, Dwivedi DK (2020) Modeling of highly efficient and low cost CH3NH3Pb(I1-xClx)3 based perovskite solar cell by numerical simulation. Opt Mater 100:109631. https://doi.org/10.1016/j.optmat.2019.109631

    Article  CAS  Google Scholar 

  10. Bhattarai S, Das TD (2021) Optimization of the solar cell design to achieve a highly improved efficiency. Opt Mater 111:110661. https://doi.org/10.1016/j.optmat.2020.11066

    Article  CAS  Google Scholar 

  11. Wilson T, Thomas T, Führer M et al (2016) Single and multi-junction solar cells utilizing a 1. 0 eV. SiGeSn Junction. 060006:0–6. https://doi.org/10.1063/1.4962096

    Article  Google Scholar 

  12. Soref R, Kouvetakis J, Tolle J et al (2007) Advances in SiGeSn technology. J Mater Res 22:3281–3291. https://doi.org/10.1557/jmr.2007.0415

    Article  ADS  CAS  Google Scholar 

  13. Lv S, Gao W, Liu Y et al (2021) Stability of Sn-Pb mixed organic–inorganic halide perovskite solar cells: Progress, challenges, and perspectives. J Energy Chem 65:371–404. https://doi.org/10.1016/j.jechem.2021.06.011

    Article  CAS  Google Scholar 

  14. Ouslimane T, Et-taya L, Elmaimouni L, Benami A (2021) Impact of absorber layer thickness, defect density, and operating temperature on the performance of MAPbI3 solar cells based on ZnO electron transporting material. Heliyon 7:e06379. https://doi.org/10.1016/j.heliyon.2021.e06379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Casas GA, Cappelletti MA, Cédola AP et al (2017) Analysis of the power conversion efficiency of perovskite solar cells with different materials as hole-transport layer by numerical simulations. Superlattices Microstruct 107:136–143. https://doi.org/10.1016/j.spmi.2017.04.007

    Article  ADS  CAS  Google Scholar 

  16. Al-Mousoi AK, Mohammed MKA, Pandey R et al (2022) Simulation and analysis of lead-free perovskite solar cells incorporating cerium oxide as electron transporting layer. RSC Adv 12:32365–32373. https://doi.org/10.1039/d2ra05957f

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sadullah M, Kaur J, Basu R, Sharma AK (2020) Analysis of thin-film direct band-gap SiGeSn alloy based heterostructure solar cell featuring SiGe absorber layer. Optik 202:163715. https://doi.org/10.1016/j.ijleo.2019.163715

    Article  ADS  CAS  Google Scholar 

  18. Nayak PP, Dutta JP, Mishra GP (2015) Efficient InGaP/GaAs DJ solar cell with double back surface field layer. Eng Sci Technol Int J 18:325–335. https://doi.org/10.1016/j.jestch.2015.01.004

    Article  Google Scholar 

  19. Galiana B, Rey-Stolle I, Baudrit M et al (2006) A comparative study of BSF layers for GaAs-based single-junction or multijunction concentrator solar cells. Semicond Sci Technol 21:1387–1392. https://doi.org/10.1088/0268-1242/21/10/003

    Article  ADS  CAS  Google Scholar 

  20. Shrivastav N, Kashyap S, Madan J et al (2023) Perovskite-CIGS monolithic Tandem Solar cells with 29.7% efficiency: a Numerical Study. Energy Fuels 37:3083–3090. https://doi.org/10.1021/acs.energyfuels.2c03973

    Article  CAS  Google Scholar 

  21. Jeon NJ, Noh JH, Yang WS et al (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480. https://doi.org/10.1038/nature14133

    Article  ADS  PubMed  CAS  Google Scholar 

  22. Hussain S, Mehmood H, Khizar M, Turan R (2018) Design and analysis of an ultra-thin crystalline silicon heterostructure solar cell featuring SiGe absorber layer. IET Circuits Devices Syst 12(5):309–314. https://doi.org/10.1049/iet-cds.2017.0132

    Article  Google Scholar 

  23. Basu R, Kaur J, Sharma AK (2019) Analysis of a direct-bandgap GeSn-Based MQW Transistor laser for mid-infrared applications. J Electron Mater 48:6335–6346. https://doi.org/10.1007/s11664-019-07418-w

    Article  ADS  CAS  Google Scholar 

  24. Nakanishi A, Takiguchi Y, Miyajima S (2016) Device simulation of CH3NH3PbI3 perovskite/heterojunction crystalline silicon monolithic tandem solar cells using an n-type a-Si:H/p-type µc-Si1–xOx:H tunnel junction. Phys Status Solidi (A) Appl Mater Sci 213:1997–2002. https://doi.org/10.1002/pssa.201532946

    Article  ADS  CAS  Google Scholar 

  25. Mohanty I, Mangal S, Singh UP (2021) Performance optimization of lead free-MASnI3/CIGS heterojunction solar cell with 287% efficiency: a numerical approach. Opt Mater 122:111812. https://doi.org/10.1016/j.optmat.2021.111812

    Article  CAS  Google Scholar 

  26. Singh AK, Srivastava S, Mahapatra A, Kumar Baral J (2021) BP Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Opt Mater 117:111193. https://doi.org/10.1016/j.optmat.2021.111193

    Article  CAS  Google Scholar 

  27. Chuan J, Tianze L, Luan H, Xia Z (2011) Research on the characteristics of organic solar cells. J Phys: Conf Ser 276:012169. https://doi.org/10.1088/1742-6596/276/1/012169

    Article  Google Scholar 

  28. Zhao P, Yue M, Lei C et al (2018) Device Simulation of organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cell with various antireflection materials. IEEE J Photovolt 8:1685–1691. https://doi.org/10.1109/JPHOTOV.2018.2869743

    Article  Google Scholar 

  29. Dastan D, Mohammed MKA, Al-Mousoi AK et al (2023) Insights into the photovoltaic properties of indium sulfide as an electron transport material in perovskite solar cells. Sci Rep 13:9076. https://doi.org/10.1038/s41598-023-36427-3

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gohri S, Madan J, Pandey R, Sharma R (2023) Design and analysis of lead-free perovskite-CZTSSe based tandem solar cell. Opt Quant Electron 55:171. https://doi.org/10.1007/s11082-022-04381-5

    Article  CAS  Google Scholar 

  31. Lakhdar N, Hima A (2020) Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3. Opt Mater 99:109517. https://doi.org/10.1016/j.optmat.2019.109517

    Article  CAS  Google Scholar 

  32. Chang ST, Liao MH, Lin W (2011) Si / SiGe hetero-junction solar cell with optimization design and theoretical analysis. Thin Solid Films 519:5022–5025. https://doi.org/10.1016/j.tsf.2011.01.120

    Article  ADS  CAS  Google Scholar 

  33. Bibi B, Farhadi B, ur Rahman W, Liu A (2021) A novel design of CTZS/Si tandem solar cell: a numerical approach. J Comput Electron 20:1769–1778. https://doi.org/10.1007/s10825-021-01733-4

    Article  CAS  Google Scholar 

  34. Hima A, Lakhdar N, Benhaoua B et al (2019) An optimized perovskite solar cell designs for high conversion efficiency. Superlattices Microstruct 129:240–246. https://doi.org/10.1016/j.spmi.2019.04.007

    Article  ADS  CAS  Google Scholar 

  35. Silvaco (2015) ATLAS device simulation software user’s manual. 1–124. https://doi.org/10.13155/29825

  36. Xu X, Liu Z, Zuo Z et al (2015) Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett 15:2402–2408. https://doi.org/10.1021/nl504701y

    Article  ADS  PubMed  CAS  Google Scholar 

  37. Moore K, Wei W (2021) Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Mater Sci 3:276–290. https://doi.org/10.1016/j.nanoms.2021.03.005

    Article  CAS  Google Scholar 

  38. Md H, Ali ATM, Saiful Islam M, Khalid Hossain N, Sultana AZMTI (2023) Numerical analysis of FeSi2 based solar cell with PEDOT:PSS hole transport layere. Mater Today Commun 34:105387. https://doi.org/10.1016/j.mtcomm.2023.105387. (Elsevier)

    Article  CAS  Google Scholar 

  39. Kato Y, Ono LK, Lee MV et al (2015) Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv Mater Interfaces 2:2–7. https://doi.org/10.1002/admi.201500195

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jaspinder Kaur is grateful to MHRD for providing financial support in the form of Post-Doctoral Fellowship. All the authors are grateful to ECE Department of NIT Delhi for providing research facilities to complete this work.

Funding

NA.

Author information

Authors and Affiliations

Authors

Contributions

Jaspinder Kaur did the simulations, prepared results and wrote the manuscript text. Ajay Kumar Sharma, Rikmantra Basu and Harjeevan Singh reviewed the manuscript.

Corresponding author

Correspondence to Jaspinder Kaur.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

NA.

Consent for Publication

NA.

Competing Interests

The authors declare no competing interests. 

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, J., Sharma, A.K., Basu, R. et al. Simulation of Planar Heterojunction CH3NH3PbI3 Solar Cell Employing SiGeSn Alloy as a Backplane. Silicon 16, 1453–1466 (2024). https://doi.org/10.1007/s12633-023-02753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02753-4

Keywords

Navigation