Skip to main content
Log in

Effect of HNTs and Modified HNTs Nanotubes on the Mechanical Properties and Swelling Resistance of EPDM/SBR Rubber Blend Nanocomposites

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study involves the incorporation of halloysite nanotubes (HNTs) modified with 3-Aminopropyltriethoxysilane (APTES) into blends of ethylene-propylene diene monomer (EPDM) and styrene-butadiene rubber (SBR). We investigate the effects of APTES-modified HNTs on the curing behavior, mechanical properties, microstructure, and swelling resistance of 80/20 phr/phr EPDM/SBR composites. The addition of APTES-modified HNTs results in an increase in minimum torque, maximum torque, and delta torque in the EPDM/SBR composites. However, both scorch time and optimal cure time decrease with higher APTES-modified HNTs content. Notably, composites containing 6 phr of APTES-modified HNTs exhibit a remarkable 121% enhancement in tensile strength and a 59% increase in stress at 100% elongation. The tear strength, hardness, and abrasion resistance of the EPDM/SBR composites increase, while the elongation at break, rebound resilience, and mole percent uptake decrease. Overall, APTES-modified HNTs filler-filled EPDM/SBR nanocomposites demonstrate superior performance compared to those filled with unmodified HNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analyzed during this investigation are included in this published article.

The author claims that the data and information in this article are all derived from this research, and the cited data and information have all been indicated in the article.

References

  1. Vishvanathperumal S, Gopalakannan S (2016) Reinforcement of ethylene vinyl acetate with carbon black/silica hybrid filler composites. Appl Mech Mater 852:16–22

    Article  Google Scholar 

  2. Ahmadi M, Shojaei A (2013) Cure kinetic and network structure of NR/SBR composites reinforced by multiwalled carbon nanotube and carbon blacks. Thermochim Acta 566:238–248

    Article  CAS  Google Scholar 

  3. Sari MG, Saeb MR, Shabanian M, Khaleghi M, Vahabi H, Vagner C, Zarrintaj P, Khalili R, Paran SMR, Ramezanzadeh B, Mozafari M (2018) Epoxy/starch-modified nano-zinc oxide transparent nanocomposite coatings: A showcase of superior curing behavior. Prog Org Coat 115:143–150

    Article  CAS  Google Scholar 

  4. Aravinth V, Navaneethakrishnan V, Vishvanathperumal S, Gurumoorthi G (2023) Effect of modified nanographene oxide (mGO)/carbon nanotubes (CNTs) hybrid filler on the cure, mechanical and swelling properties of silicone rubber composites. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-023-02818-2

    Article  Google Scholar 

  5. Puglia D, Rastin H, Saeb MR, Shojaei B, Formela K (2017) Cure kinetics of epoxy/MWCNTs nanocomposites: isothermal calorimetric and rheological analyses. Prog Org Coat 108:75–83

    Article  Google Scholar 

  6. Vishvanathperumal S, Anand G (2021) Effect of Nanosilica and Crosslinking System on the Mechanical Properties and Swelling Resistance of EPDM/SBR Nanocomposites with and without TESPT. SILICON 13(10):3473–3497

    Article  CAS  Google Scholar 

  7. Chonkaew W, Minghvanish W, Kungliean U, Rochanawipart N, Brostow W (2011) Vulcanization characteristics and dynamic mechanical behavior of natural rubber reinforced with silane modified silica. J Nanosci Nanotechnol 11(3):2018–2024

    Article  PubMed  CAS  Google Scholar 

  8. López-Manchado MA, Arroyo M, Herrero B, Biagiotti J (2003) Vulcanization kinetics of natural rubber–organoclay nanocomposites. J Appl Polym Sci 89(1):1–15

    Article  Google Scholar 

  9. Wang J, Meng Y, Lu T, Zhang J, Wang H, Sheng J, Huang C, Hang Z (2019) Influence of melamine formaldehyde microsphere on the vulcanization kinetics and mechanical properties of nitrile butadiene rubber. J Elastomers Plast 51(2):143–156

    Article  Google Scholar 

  10. Sadek EM, El-Nashar DE, Ahmed SM (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene–butadiene rubber. Polym Compos 36(7):1293–1302

    Article  CAS  Google Scholar 

  11. Tang MZ, Xing W, Wu JR, Huang GS, Li H, Wu SD (2014) Vulcanization kinetics of graphene/styrene butadiene rubber nanocomposites. Chin J Polym Sci 32:658–666

    Article  CAS  Google Scholar 

  12. Allahbakhsh A, Mazinani S, Kalaee MR, Sharif F (2013) Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites. Thermochim Acta 563:22–32

    Article  CAS  Google Scholar 

  13. Akhlaghi S, Kalaee M, Mazinani S, Jowdar E, Nouri A, Sharif A, Sedaghat N (2012) Effect of zinc oxide nanoparticles on isothermal cure kinetics, morphology and mechanical properties of EPDM rubber. Thermochim Acta 527:91–98

    Article  CAS  Google Scholar 

  14. Mathew G, Rhee JM, Lee YS, Park DH, Nah C (2008) Cure kinetics of ethylene acrylate rubber/clay nanocomposites. J Ind Eng Chem 14(1):60–65

    Article  CAS  Google Scholar 

  15. Khosravi A, Fereidoon A, Khorasani MM, Saeb MR (2022) Experimental and theoretical mechanical behavior of compatibilized polylactic acid/polyolefin elastomer blends for potential packaging applications. Iran Polym J 31(5):651–663

    Article  CAS  Google Scholar 

  16. Sundaravadivel G, Parthasarathy K, Vishvanathperumal S, Navaneethakrishnan V (2023) Effect of complex of resorcinol and hexamethylenetetramine modified halloysite nanotubes (RH-HNTs) on the mechanical and swelling characteristics of NR/EPDM nanocomposites. J Polym Res 30(10):383

    Article  CAS  Google Scholar 

  17. Dhanasekar S, Baskar S, Vishvanathperumal S (2023) Cure characteristics, compression set, swelling behaviors, abrasion resistance and mechanical properties of nanoclay (Cloisite 15A, Cloisite 20A and Cloisite 30B) filler filled EPDM/NBR blend system. J Polym Res 30(10):375

    Article  CAS  Google Scholar 

  18. Sundaravadivel G, Venkataraman SR, Vishvanathperumal S, Navaneethakrishnan V (2023) Influence of APTES modified HNTs on properties of NR/EPDM nanocomposites. Silicon. https://doi.org/10.1007/s12633-023-02668-0

    Article  Google Scholar 

  19. Prakash PC, Srinivasan D, Navaneethakrishnan V, Vishvanathperumal S (2023) Effect of modified nanographene oxide loading on the swelling and compression set behavior of EPDM/SBR nano-composites. J Inorg Organomet Polym Mater, pp.1–18. (In-Press)

  20. Dhanasekar S, Theja MR, Baskar S, Vishvanathperumal S (2023) Effects of Nanosilica on the Mechanical Properties and Swelling Resistance of EPDM/NBR Nanocomposites. Polym Korea 47(5):613–627

    Article  CAS  Google Scholar 

  21. Senthilvel K, Vishvanathperumal S, Prabu B, John Baruch L (2016) Studies on the morphology, cure characteristics and mechanical properties of acrylonitrile butadiene rubber with hybrid filler (carbon black/silica) composite. Polym Polym Compos 24(7):473–480

    Article  CAS  Google Scholar 

  22. Ravi Theja MS, Kilari N, Vishvanathperumal S, Navaneethakrishnan V (2021) Modeling tensile modulus of nanoclay-filled ethylene–propylene–diene monomer/styrene–butadiene rubber using composite theories. J Rubber Res 24(5):847–856

    Article  CAS  Google Scholar 

  23. Nair TM, Kumaran MG, Unnikrishnan G (2004) Mechanical and aging properties of cross-linked ethylene propylene diene rubber/styrene butadiene rubber blends. J Appl Polym Sci 93(6):2606–2621

    Article  CAS  Google Scholar 

  24. Nair TM, Kumaran MG, Unnikrishnan G, Pillai VB (2009) Dynamic mechanical analysis of ethylene–propylene–diene monomer rubber and styrene–butadiene rubber blends. J Appl Polym Sci 112(1):72–81

    Article  CAS  Google Scholar 

  25. Nair TM, Kumaran MG, Unnikrishnan G, Kunchandy S (2008) Ageing studies of ethylene propylene diene monomer rubber/styrene butadiene rubber blends: Effects of heat, ozone, gamma radiation, and water. J Appl Polym Sci 107(5):2923–2929

    Article  CAS  Google Scholar 

  26. Vishvanathperumal S, Navaneethakrishnan V, Anand G, Gopalakannan S (2020) Evaluation of crosslink density using material constants of ethylene-propylene-diene monomer/styrene-butadiene rubber with different nanoclay loading: finite element analysis-simulation and experimental. Adv Sci Eng Med 12(5):632–642

    Article  CAS  Google Scholar 

  27. Vishvanathperumal S, Anand G (2020) Effect of nanoclay/nanosilica on the mechanical properties, abrasion and swelling resistance of EPDM/SBR composites. Silicon 12(8):1925–1941

    Article  CAS  Google Scholar 

  28. Ragupathy K, Prabaharan G, Pragadish N, Vishvanathperumal S (2023) Effect of Silica Nanoparticles and Modified Silica Nanoparticles on the Mechanical and Swelling Properties of EPDM/SBR Blend Nanocomposites. Silicon 15:6033–6046

    Article  CAS  Google Scholar 

  29. Vishvanathperumal S, Gopalakannan S (2019) Effects of the nanoclay and crosslinking systems on the mechanical properties of ethylene-propylene-diene monomer/styrene butadiene rubber blends nanocomposite. Silicon 11(1):117–135

    Article  CAS  Google Scholar 

  30. Chen D, Chen F, Hu X, Zhang H, Yin X, Zhou Y (2015) Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos Sci Technol 117:307–314

    Article  CAS  Google Scholar 

  31. Gan L, Shang S, Jiang SX (2016) Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Compos B Eng 84:294–300

    Article  CAS  Google Scholar 

  32. Shang S, Gan L, Yuen MCW, Jiang SX, Luo NM (2014) Carbon nanotubes based high temperature vulcanized silicone rubber nanocomposite with excellent elasticity and electrical properties. Compos A Appl Sci Manuf 66:135–141

    Article  CAS  Google Scholar 

  33. Pradhan B, Srivastava SK (2014) Synergistic effect of three-dimensional multi-walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym Int 63(7):1219–1228

    Article  CAS  Google Scholar 

  34. Jouyandeh M, Karami Z, Jazani OM, Formela K, Paran SMR, Jannesari A, Saeb MR (2019) Curing epoxy resin with anhydride in the presence of halloysite nanotubes: The contradictory effects of filler concentration. Prog Org Coat 126:129–135

    Article  CAS  Google Scholar 

  35. Vishvanathperumal S, Gopalakannan S (2017) Swelling properties, compression set behavior and abrasion resistance of ethylene-propylene-diene rubber/styrene butadiene rubber blend nanocomposites. Polym Korea 41(3):433–442

    Article  CAS  Google Scholar 

  36. Bitinis N, Hernández M, Verdejo R, Kenny JM, Lopez-Manchado MA (2011) Recent advances in clay/polymer nanocomposites. Adv Mater 23(44):5229–5236

    Article  PubMed  CAS  Google Scholar 

  37. Chiu CW, Huang TK, Wang YC, Alamani BG, Lin JJ (2014) Intercalation strategies in clay/polymer hybrids. Prog Polym Sci 39(3):443–485

    Article  CAS  Google Scholar 

  38. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  39. Utracki LA (2004) Clay-containing polymeric nanocomposites, vol 1. iSmithers Rapra Publishing

  40. Mittal V, Kim JK, Pal K (eds) (2011) Recent advances in elastomeric nanocomposites, vol 9. Springer, Berlin, p 388

  41. Lvov Y, Abdullayev E (2013) Functional polymer–clay nanotube composites with sustained release of chemical agents. Prog Polym Sci 38(10–11):1690–1719

    Article  CAS  Google Scholar 

  42. Duce C, Vecchio Ciprioti S, Ghezzi L, Ierardi V, Tine MR (2015) Thermal behavior study of pristine and modified halloysite nanotubes: A modern kinetic study. J Therm Anal Calorim 121:1011–1019

    Article  CAS  Google Scholar 

  43. Rawtani D, Agrawal YK (2012) Halloysite as support matrices: a review. Emerg Mater Res 1(4):212–220

    CAS  Google Scholar 

  44. Kausar A (2018) Review on polymer/halloysite nanotube nanocomposite. Polym-Plast Technol Eng 57(6):548–564

    Article  CAS  Google Scholar 

  45. Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3(02):25–29

    Google Scholar 

  46. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  CAS  Google Scholar 

  47. Ganeche PS, Balasubramanian P, Vishvanathperumal S (2022) Halloysite nanotubes (HNTs)-filled ethylene-propylene-diene monomer/styrene-butadiene rubber (EPDM/SBR) composites: mechanical, swelling, and morphological properties. Silicon 14(12):6611–6620

    Article  CAS  Google Scholar 

  48. Danafar F, Kalantari M (2018) A review of natural rubber nanocomposites based on carbon nanotubes. J Rubber Res 21:293–310

    Article  CAS  Google Scholar 

  49. Xu C, Cao L, Chen Y (2014) Glass fibers reinforced poly (ethylene 2, 6-naphthalate)/ethylene propylene diene monomer composites: Structure, mechanical, and thermal properties. Polym Compos 35(5):939–947

    Article  CAS  Google Scholar 

  50. Guo B, Zou Q, Lei Y, Du M, Liu M, Jia D (2009) Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta 484(1–2):48–56

    Article  CAS  Google Scholar 

  51. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P (2011) Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol 71(16):1859–1866

    Article  CAS  Google Scholar 

  52. Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96(2):226–235

    Article  CAS  Google Scholar 

  53. Tang Y, Ye L, Deng S, Yang C, Yuan W (2012) Influences of processing methods and chemical treatments on fracture toughness of halloysite–epoxy composites. Mater Des 42:471–477

    Article  CAS  Google Scholar 

  54. Lecouvet B, Sclavons M, Bourbigot S, Bailly C (2013) Thermal and flammability properties of polyethersulfone/halloysite nanocomposites prepared by melt compounding. Polym Degrad Stab 98(10):1993–2004

    Article  CAS  Google Scholar 

  55. Pedrazzoli D, Pegoretti A, Thomann R, Kristof J, Karger-Kocsis J (2015) Toughening linear low-density polyethylene with halloysite nanotubes. Polym Compos 36(5):869–883

    Article  CAS  Google Scholar 

  56. Ning NY, Yin QJ, Luo F, Zhang Q, Du R, Fu Q (2007) Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48(25):7374–7384

    Article  CAS  Google Scholar 

  57. Rooj S, Das A, Heinrich G (2011) Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polymer J 47(9):1746–1755

    Article  CAS  Google Scholar 

  58. Guo B, Chen F, Lei Y, Liu X, Wan J, Jia D (2009) Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Appl Surf Sci 255(16):7329–7336

    Article  CAS  Google Scholar 

  59. Pasbakhsh P, Ismail H, Fauzi MA, Bakar AA (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48(3):405–413

    Article  CAS  Google Scholar 

  60. Pasbakhsh P, Ismail H, Fauzi MA, Bakar AA (2009) Influence of maleic anhydride grafted ethylene propylene diene monomer (MAH-g-EPDM) on the properties of EPDM nanocomposites reinforced by halloysite nanotubes. Polym Testing 28(5):548–559

    Article  CAS  Google Scholar 

  61. Sundar R, Mohan SK, Vishvanathperumal S (2022) Effect of Surface Modified Halloysite Nanotubes (mHNTs) on the Mechanical Properties and Swelling Resistance of EPDM/NBR Nanocomposites. Polymer Korea 46(6):728–743

    Article  CAS  Google Scholar 

  62. Govindan K, Ramabalan S, Vishvanathperumal S, Chockalingam S (2023) Influence of halloysite nanotubes on mechanical and swelling properties of silicone rubber compound. J Polym Res 30(8):1–17

    Article  Google Scholar 

  63. Zegaoui A, Derradji M, Ma R, Cai WA, Medjahed A, Liu WB, Dayo AQ, Wang J (2018) Silane-modified carbon fibers reinforced cyanate ester/benzoxazine resin composites: Morphological, mechanical and thermal degradation properties. Vacuum 150:12–23

    Article  CAS  Google Scholar 

  64. Zegaoui A, Ma R, Dayo AQ, Derradji M, Wang J, Liu W, Xu Y (2018) Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers. Chin J Chem Eng 26(5):1219–1228

    Article  CAS  Google Scholar 

  65. Derradji M, Ramdani N, Gong LD, Wang J, Xu XD, Lin ZW, Henniche A, Liu WB (2016) Mechanical, thermal, and UV-shielding behavior of silane surface modified ZnO-reinforced phthalonitrile nanocomposites. Polym Adv Technol 27(7):882–888

    Article  CAS  Google Scholar 

  66. Yang Y, Chen Y, Leng F, Huang L, Wang Z, Tian W (2017) Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Appl Sci 7(12):1215

    Article  Google Scholar 

  67. Bee SL, Abdullah MAA, Bee ST, Sin LT, Rahmat AR (2018) Polymer nanocomposites based on silylated-montmorillonite: A review. Prog Polym Sci 85:57–82

    Article  CAS  Google Scholar 

  68. Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30(3):282–295

    CAS  Google Scholar 

  69. Azizli MJ, Barghamadi M, Rezaeeparto K, Mokhtary M, Parham S (2020) Compatibility, mechanical and rheological properties of hybrid rubber NR/EPDM-g-MA/EPDM/graphene oxide nanocomposites: theoretical and experimental analyses. Compos Commun 22:100442

    Article  Google Scholar 

  70. Azizli MJ, Naderi G, Bakhshandeh GR, Soltani S, Askari F, Esmizadeh E (2014) Improvement in physical and mechanical properties of IIR/CR rubber blend organoclay nanocomposites. Rubber Chem Technol 87(1):10–20

    Article  CAS  Google Scholar 

  71. Azizli MJ, Ziaee M, Rezaeinia S, Seyfi J, Mansourian-Tabaei M, Hoseinzadeh M, Azizli MH (2018) Studying the roles of nanoclay and blend composition on the improved properties of natural rubber/chloroprene composites. Polym Compos 39(5):1562–1574

    Article  CAS  Google Scholar 

  72. Azizli MJ, Abbasizadeh S, Hoseini M, Rezaeinia S, Azizli E (2017) Influence of blend composition and organic cloisite 15A content in the structure of isobutylene–isoprene rubber/ethylene propylene diene monomer composites for investigation of morphology and mechanical properties. J Compos Mater 51(13):1861–1873

    Article  CAS  Google Scholar 

  73. Azizli MJ, Mokhtary M, Khonakdar HA, Goodarzi V (2020) Compatibilizer/graphene/carboxylated acrylonitrile butadiene rubber (XNBR)/ethylenepropylenediene monomer (EPDM) nanocomposites: Morphology, compatibility, rheology and mechanical properties. J Appl Polym Sci 137(43):app49331

    Article  CAS  Google Scholar 

  74. Vishvanathperumal S, Anand G (2022) Effect of nanosilica on the mechanical properties, compression set, morphology, abrasion and swelling resistance of sulphur cured EPDM/SBR composites. Silicon 14(7):3523–3534

    Article  CAS  Google Scholar 

  75. Vishvanathperumal S, Navaneethakrishnan V, Gopalakannan S (2018) The effect of Nanoclay and hybrid filler on curing characteristics, mechanical properties and swelling resistance of ethylene-vinyl acetate/styrene butadiene rubber blend composite. J Adv Microsc Res 13(4):469–476

    Article  Google Scholar 

  76. Dhanasekar S, Baskar S, Vishvanathperumal S (2023) Halloysite nanotubes effect on cure and mechanical properties of EPDM/NBR nanocomposites. J Inorg Organomet Polym Mater 33:3208–3220. https://doi.org/10.1007/s10904-023-02754-1

    Article  CAS  Google Scholar 

  77. Karami Z, Jazani OM, Navarchian AH, Karrabi M, Vahabi H, Saeb MR (2019) Well-cured silicone/halloysite nanotubes nanocomposite coatings. Prog Org Coat 129:357–365

    Article  CAS  Google Scholar 

  78. Sun Y, He J, Zhong B, Zhu L, Liu F (2019) A synthesized multifunctional rubber additive and its improvements on the curing and antioxidative properties of styrene-butadiene rubber/silica composites. Polym Degrad Stab 170:108999

    Article  CAS  Google Scholar 

  79. Anand G, Vishvanathperumal S (2022) Properties of SBR/NR Blend: The Effects of Carbon Black/Silica (CB/SiO2) Hybrid Filler and Silane Coupling Agent. Silicon 14:9051–9060

    Article  CAS  Google Scholar 

  80. Manoj KC, Kumari P, Rajesh C, Unnikrishnan G (2010) Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17:1–9

    Article  CAS  Google Scholar 

  81. Sujith A, Unnikrishnan G (2006) Molecular sorption by heterogeneous natural rubber/poly(ethylene-co-vinyl acetate) blend systems. J Polym Res 13:171–180

    Article  CAS  Google Scholar 

  82. Thomas PC, Tomlal JE, Selvin TP, Thomas S, Joseph K (2010) High-performance nanocomposites based on acrylonitrile butadiene rubber with fillers of different particle size: Mechanical and morphological studies. Polym Compos 31:1515–1524

    Article  CAS  Google Scholar 

  83. Flory PJ, Rehner J (1943) Statistical Mechanics of Cross-Linked Polymer Networks I. Rubber like Elasticity. J Chem Phys 11:512

    Article  CAS  Google Scholar 

  84. Naseri ASZ, Arani AJ (2015) A comparison between the effects of gamma radiation and sulfur cure system on the microstructure and crosslink network of (styrene butadiene rubber/ethylene propylene diene monomer) blends in presence of nanoclay. Radiat Phys Chem 115:68–74

    Article  Google Scholar 

  85. Noriman NZ, Ismail H (2012) Properties of styrene butadiene rubber (SBR)/recycled acrylonitrile butadiene rubber (NBRr) blends: the effects of carbon black/silica (CB/silica) hybrid filler and silane coupling agent, Si69. J Appl Polym Sci 124:19–27

    Article  CAS  Google Scholar 

  86. Das RK, Ragupathy K, Kumar TS, Vishvanathperumal S (2023) Effect of Halloysite Nanotubes (HNTs) on Mechanical Properties of EPDM/NBR Blend-Nanocomposites. Polym Korea 47(2):221–232

    Article  CAS  Google Scholar 

  87. Aravinth V, Gurumoorthi G, Vishvanathperumal S, Navaneethakrishnan V (2023) Effect of Modified Nanographene Oxide on the Mechanical and Swelling Properties of Silicone Rubber Nanocomposites. Polym Korea 47(3):288–302

    Article  CAS  Google Scholar 

  88. Prakash PC, Gurumoorthi G, Navaneethakrishnan V, Vishvanathperumal S (2023) Effect of Nanographene Oxide on the Mechanical Properties of EPDM/SBR Nano-composites. Polym Korea 47(4):427–439

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express gratitude to the Management and Principal of S.A. Engineering College, Chennai. The authors would also like to thank the Mechanical Engineering Department at same college.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

Dr. A. Arunkumar and Mr. D. Srinivasan: Conceptualization, Investigation, Methodology, Writing – original draft; Dr. S. Vishvanathperumal: Methodology, Writing – review & editing; Dr. V. Navaneethakrishnan: Methodology, Writing – original draft.

Corresponding author

Correspondence to A. Arunkumar.

Ethics declarations

No, all testing are conducted in this study as per ASTM standards.

Competing Interests

The authors declare no competing interests.

Consent to Participate

The authors declare no objection of consent to participate.

Consent for Publication

The authors declare the no objection of consent to publication.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arunkumar, A., Srinivasan, D., Vishvanathperumal, S. et al. Effect of HNTs and Modified HNTs Nanotubes on the Mechanical Properties and Swelling Resistance of EPDM/SBR Rubber Blend Nanocomposites. Silicon 15, 7647–7667 (2023). https://doi.org/10.1007/s12633-023-02740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02740-9

Keywords

Navigation