Skip to main content
Log in

Combined Application of Zinc and Silicon Improved Growth, Gas Exchange Traits, and Productivity of Maize (Zea mays L.) Under Water Stress

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Maize (Zea mays L.) is an important cereal crop globally and regarded sensitive to water stress. Exogenous application of micronutrients such as zinc (Zn) and silicon (Si) significantly improves abiotic stress tolerance of crop plants. Therefore, the current study assessed the effects of combined Zn and Si application on the growth, gas exchange, and yield-related traits of maize plants subjected to water stress. The plants were grown under either well-watered (75% water holding capacity - WW) or water stress (50% water holding capacity - DS) conditions. Three soil-applied Zn levels [i.e., 0 (Zn0), 10 (Zn10) and 20 (Zn20) mg kg−1] and two soil-applied Si levels [i.e., 0 (Si0) and 100 (Si100) mg kg−1] were included in the study. Increased leaf area, root length, number of roots per plant, chlorophyll contents, stomatal conductance, transpiration and photosynthetic rates, plant height, cob length, number of grains per cob, 100-grain weight, and grain and biological yields were recorded for the plants grown under WW conditions supplemented with Zn10 and Si100. Conversely, the plants grown without Zn and Si supplementation under DS displayed the lowest values for these traits. The supplementation of Zn10 and Si100 considerably enhanced growth, gas exchange, and yield-related traits of maize plants cultivated under DS compared to their no application. In conclusion, soil application of Zn10 and Si100 improved growth, gas exchange, and yield-related characteristics of maize plants under DS; therefore, maize should be supplemented with these nutrients to improve yield and economic returns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data are given within the manuscript. The raw data will be available from the corresponding author on request.

References

  1. Nawaz M, Wang X, Saleem MH et al (2021) Deciphering Plantago ovata forsk leaf extract mediated distinct germination, growth and physio-biochemical improvements under water stress in Maize (Zea mays L.) at early growth stage. Agronomy 11:1404. https://doi.org/10.3390/agronomy11071404

    Article  CAS  Google Scholar 

  2. Dustgeer Z, Seleiman MF, Khan I et al (2021) Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Not Bot Horti Agrobot Cluj Napoca 49:12248. https://doi.org/10.15835/nbha49112248

    Article  CAS  Google Scholar 

  3. GOP (2021) Economic survey of Pakistan. Economic Advisory Wing, Islamabad

    Google Scholar 

  4. Hallauer AR, Carena MJ (2009) Maize. In: Cereals. Springer US, New York, pp 3–98

  5. Ehrlich PR, Harte J (2015) To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci 112:14743–14744. https://doi.org/10.1073/pnas.1519841112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saleem MH, Kamran M, Zhou Y et al (2020) Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. J Environ Manage 257:109994. https://doi.org/10.1016/j.jenvman.2019.109994

    Article  CAS  PubMed  Google Scholar 

  7. Tyczewska A, Woźniak E, Gracz J et al (2018) Towards food security: current state and future prospects of agrobiotechnology. Trends Biotechnol 36:1219–1229. https://doi.org/10.1016/j.tibtech.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Seleiman MF, Kheir AMS (2018) Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204:514–522. https://doi.org/10.1016/j.chemosphere.2018.04.073

    Article  CAS  PubMed  Google Scholar 

  9. Seleiman MF, Al-Suhaibani N, Ali N et al (2021) Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259. https://doi.org/10.3390/plants10020259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sofy MR, Seleiman MF, Alhammad BA et al (2020) Minimizing adverse effects of Pb on Maize plants by Combined treatment with Jasmonic, salicylic acids and proline. Agronomy 10:699. https://doi.org/10.3390/agronomy10050699

    Article  CAS  Google Scholar 

  11. Desoky E-SM, Mansour E, Yasin MAT et al (2020) Improvement of drought tolerance in five different cultivars of Vicia faba with foliar application of ascorbic acid or silicon. Span J Agric Res 18:e0802. https://doi.org/10.5424/sjar/2020182-16122

    Article  Google Scholar 

  12. Batool T, Ali S, Seleiman MF et al (2020) Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep 10:16975. https://doi.org/10.1038/s41598-020-73489-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koentjoro Y, Sukendah Purwanto E, Purnomo D (2021) The role of silicon on content of proline, protein and abscisic acid on soybean under drought stress. IOP Conf Ser Earth Environ Sci 637:012086. https://doi.org/10.1088/1755-1315/637/1/012086

    Article  Google Scholar 

  14. Zulfiqar F, Ashraf M (2021) Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Mol Biol 105:11–41. https://doi.org/10.1007/s11103-020-01077-w

    Article  CAS  PubMed  Google Scholar 

  15. Zulfiqar F, Chen J, Finnegan PM et al (2021) Application of trehalose and salicylic acid mitigates drought stress in sweet basil and improves plant growth. Plants 10:1078. https://doi.org/10.3390/plants10061078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taha RS, Seleiman MF, Shami A et al (2021) Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants 10:1040. https://doi.org/10.3390/plants10061040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Badawy SA, Zayed BA, Bassiouni SMA et al (2021) Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (Oryza sativa L.) under salinity conditions. Plants 10:1657. https://doi.org/10.3390/plants10081657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seleiman Refay, Al-Suhaibani et al (2019) Integrative effects of rice-straw biochar and silicon on oil and seed quality, yield and physiological traits of Helianthus annuus L. grown under water deficit stress. Agronomy 9:637. https://doi.org/10.3390/agronomy9100637

    Article  CAS  Google Scholar 

  19. Nahar K, Jahiruddin M, Islam MR et al (2020) Biofortification of rice grain as affected by different doses of zinc fertilization. Asian Soil Res J 1–6:1. https://doi.org/10.9734/asrj/2020/v3i130062

    Article  Google Scholar 

  20. Umair Hassan M, Aamer M, Umer Chattha M et al (2020) The critical role of zinc in plants facing the drought stress. Agriculture 10:396. https://doi.org/10.3390/agriculture10090396

    Article  CAS  Google Scholar 

  21. Nadeem F, Azhar M, Anwar-ul-Haq M et al (2020) Comparative response of two rice (Oryza sativa L.) cultivars to applied zinc and manganese for mitigation of salt stress. J Soil Sci Plant Nutr 20:2059–2072. https://doi.org/10.1007/s42729-020-00275-1

    Article  CAS  Google Scholar 

  22. Cakmak I (2000) Tansley review No. 111 possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x

    Article  CAS  PubMed  Google Scholar 

  23. Seleiman MF, Ahmad A, Battaglia ML et al (2023) Zinc oxide nanoparticles: a unique saline stress mitigator with the potential to increase future crop production. South Afr J Bot 159:208–218. https://doi.org/10.1016/j.sajb.2023.06.009

    Article  CAS  Google Scholar 

  24. Siddiqui MH, Mukherjee S, Al-Munqedhi BMA et al (2022) Salicylic acid and silicon impart resilience to lanthanum toxicity in Brassica juncea L. seedlings. Plant Growth Regul. https://doi.org/10.1007/s10725-021-00787-5

    Article  Google Scholar 

  25. Pang Z (2019) Silicon-mediated improvement in tolerance of economically important crops under drought stress. Appl Ecol Environ Res 17:6151–6170. https://doi.org/10.15666/aeer/1703_61516170

    Article  Google Scholar 

  26. Pei ZF, Ming DF, Liu D et al (2010) Silicon improves the tolerance to water-deficit stress Induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115. https://doi.org/10.1007/s00344-009-9120-9

    Article  CAS  Google Scholar 

  27. Anser A (2012) Silicon mediated biochemical changes in wheat under salinized and non-salinzed solution cultures. Afr J Biotechnol. https://doi.org/10.5897/AJB11.1757

    Article  Google Scholar 

  28. Wang X, Cai J, Jiang D et al (2011) Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. J Plant Physiol 168:585–593. https://doi.org/10.1016/j.jplph.2010.09.016

    Article  CAS  PubMed  Google Scholar 

  29. Shemi R, Wang R, Gheith E-SMS et al (2021) Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci Rep 11:3195. https://doi.org/10.1038/s41598-021-82264-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maghsoudi K, Emam Y, Ashraf M, Arvin MJ (2019) Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop Pasture Sci 70:36. https://doi.org/10.1071/CP18213

    Article  CAS  Google Scholar 

  31. Nachabe MH (1998) Refining the definition of field capacity in the literature. J Irrig Drain Eng 124:230–232. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:4(230)

    Article  Google Scholar 

  32. Zekri M (1991) Effects of NaCl on growth and physiology of sour orange and Cleopatra mandarin seedlings. Sci Hortic 47:305–315. https://doi.org/10.1016/0304-4238(91)90013-O

    Article  CAS  Google Scholar 

  33. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  34. Steel RGD, Torrie JH, Dickey D (1997) Principles and procedures of statistics a biometrical approach (3rd ed.). McGraw HillBookCo. Inc., New York, pp 352–358

  35. Sharma A, Wang J, Xu D et al (2020) Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Sci Total Environ 713:136675. https://doi.org/10.1016/j.scitotenv.2020.136675

    Article  CAS  PubMed  Google Scholar 

  36. Iqbal A, Dong Q, Wang X et al (2020) High nitrogen enhance drought tolerance in cotton through antioxidant enzymatic activities, nitrogen metabolism and osmotic adjustment. Plants 9:178. https://doi.org/10.3390/plants9020178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saikia J, Sarma RK, Dhandia R et al (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8:3560. https://doi.org/10.1038/s41598-018-21921-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Faraji J, Sepehri A (2019) Ameliorative effects of TiO2 nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. J Seed Sci 41:309–317. https://doi.org/10.1590/2317-1545v41n3213139

    Article  Google Scholar 

  39. Ahmed K, Shahid S, Nawaz N (2018) Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos Res 214:364–374. https://doi.org/10.1016/j.atmosres.2018.08.020

    Article  Google Scholar 

  40. Hanafy R (2017) Using Moringa Olifera leaf extract as a bio-fertilizer for drought stress mitigation of glycine max L. plants. Egypt J Bot 0–0. https://doi.org/10.21608/ejbo.2017.596.1027

  41. Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48. https://doi.org/10.1016/j.tplants.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  42. Hussain M, Farooq S, Hasan W, Ul-Allah S, Tanveer M, Farooq M, Nawaz A (2018) Drought stress in sunflower: physiological effects and its management through breeding and agronomic alternatives. Agric Water Manage 201:152–166

    Article  Google Scholar 

  43. Ahmad S, Muhammad I, Wang GY et al (2021) Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. BMC Plant Biol 21:368. https://doi.org/10.1186/s12870-021-03160-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture – not by affecting ATP synthesis. Trends Plant Sci 5:187–188. https://doi.org/10.1016/S1360-1385(00)01625-3

    Article  Google Scholar 

  45. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917. https://doi.org/10.1038/44842

    Article  CAS  Google Scholar 

  46. Li Y, He N, Hou J et al (2018) Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol 6:64. https://doi.org/10.3389/fevo.2018.00064

    Article  CAS  Google Scholar 

  47. Sayyad-Amin P, Jahansooz M-R, Borzouei A, Ajili F (2016) Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J Biol Phys 42:601–620. https://doi.org/10.1007/s10867-016-9428-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Li G, Sun H et al (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open. https://doi.org/10.1242/bio.035279

    Article  PubMed  PubMed Central  Google Scholar 

  49. Singh H, Singh M, Jaswal C (2021) Antitranspirant: a novel emerging approach to combat drought stress in maize (Zea mays L). Biotica Res Today 3:68–69

    Google Scholar 

  50. Abd Ulameer OQ, Al-Hassan Ahmed SABD (2018) Anti-transpirant role in improving the morphological growth traits of maize plants subjected to water stress. Res Crops 19:593–603

    Google Scholar 

  51. Jin N, He J, Fang Q et al (2020) The responses of maize yield and water use to growth stage-based irrigation on the loess plateau in China. Int J Plant Prod 14:621–633. https://doi.org/10.1007/s42106-020-00105-5

    Article  Google Scholar 

  52. Huang C, Ma S, Gao Y et al (2022) Response of summer maize growth and water use to different irrigation regimes. Agronomy 12:768. https://doi.org/10.3390/agronomy12040768

    Article  Google Scholar 

  53. Aroca R, Irigoyen JJ, Sánchez-Díaz M (2003) Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117:540–549. https://doi.org/10.1034/j.1399-3054.2003.00065.x

    Article  CAS  PubMed  Google Scholar 

  54. Marenco RA, Lopes NF (2005) Plant physiology: photosynthesis, respiration, water relations and mineral nutrition, 451st edn. UFV, Viçosa ((in Portuguese))

    Google Scholar 

  55. Marques DJ, Broetto F, Ferreira MM et al (2014) Effect of potassium sources on the antioxidant activity of eggplant. Rev Bras Cienc Solo 38:1836–1842. https://doi.org/10.1590/S0100-06832014000600018

    Article  CAS  Google Scholar 

  56. Taiz L, Zeiger E (2010) Plant physiology (5th ed.). Sinauer Associates, Sunderland, p 464

  57. Ye Y, Wen Z, Yang H et al (2020) Effects of post-silking water deficit on the leaf photosynthesis and senescence of waxy maize. J Integr Agric 19:2216–2228. https://doi.org/10.1016/S2095-3119(20)63158-6

    Article  CAS  Google Scholar 

  58. Marques DJ, Bianchini HC, Maciel GM et al (2022) Morphophysiological changes resulting from the application of silicon in corn plants under water stress. J Plant Growth Regul 41:569–584. https://doi.org/10.1007/s00344-021-10322-5

    Article  CAS  Google Scholar 

  59. Amin M, Ahmad R, Ali A et al (2018) Influence of silicon fertilization on maize performance under limited water supply. Silicon 10:177–183. https://doi.org/10.1007/s12633-015-9372-x

    Article  CAS  Google Scholar 

  60. Bianchini HC, Marques DJ (2019) Tolerance to hydric stress on cultivars of silicon-fertilized corn crops: absorption and water-use efficiency. Bioscience J 35:527–539

    Article  Google Scholar 

  61. Romanatti PV, Rocha GA, Veroneze Júnior V et al (2019) Limitation to photosynthesis in leaves of eggplant under UVB according to anatomical changes and alterations on the antioxidant system. Sci Hortic 249:449–454. https://doi.org/10.1016/j.scienta.2019.01.060

    Article  CAS  Google Scholar 

  62. de Jesus EG, de Fatima RT, Guerrero AC et al (2018) Growth and gas exchanges of arugula plants under silicon fertilization and water restriction. Revista Brasileira De Engenharia Agrícola E Ambiental 22:119–124. https://doi.org/10.1590/1807-1929/agriambi.v22n2p119-124

    Article  Google Scholar 

  63. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    Article  CAS  Google Scholar 

  64. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442. https://doi.org/10.1016/j.tplants.2015.04.007

    Article  CAS  PubMed  Google Scholar 

  65. Wang M, Wang R, Mur LAJ et al (2021) Functions of silicon in plant drought stress responses. Hortic Res 8:254. https://doi.org/10.1038/s41438-021-00681-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gong HJ, Chen KM, Zhao ZG et al (2008) Effects of silicon on defense of wheat against oxidative stress under drought at different developmental stages. Biol Plant 52:592–596. https://doi.org/10.1007/s10535-008-0118-0

    Article  CAS  Google Scholar 

  67. Sun L, Song F, Zhu X et al (2021) Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch Agron Soil Sci 67:245–259. https://doi.org/10.1080/03650340.2020.1723003

    Article  CAS  Google Scholar 

  68. Barrameda-Medina Y, Lentini M, Esposito S et al (2017) Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L. J Sci Food Agric 97:1828–1836. https://doi.org/10.1002/jsfa.7983

    Article  CAS  PubMed  Google Scholar 

  69. Irfan M, Maqsood MA, Rehman HU et al (2023) Silicon nutrition in plants under water-deficit conditions: overview and prospects. Water (Basel) 15:739. https://doi.org/10.3390/w15040739

    Article  CAS  Google Scholar 

  70. Pavlovic J, Kostic L, Bosnic P et al (2021) Interactions of Silicon with essential and beneficial elements in plants. Front Plant Sci 12:697592. https://doi.org/10.3389/fpls.2021.697592

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sattar A, Wang X, Ul-Allah S et al (2022) Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum L.) under water stress. Saudi J Biol Sci 29:1699–1706. https://doi.org/10.1016/j.sjbs.2021.10.061

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Abida Aziz and Mubshar Hussain conceptualized the study, Kiran Idrees and Muhammad Naeem conducted the experiments, Muhammad Farooq Azhar and Shahid Farooq analyzed the data and prepared the initial draft of the manuscript. Abida Aziz and Mubshar Hussain supervised the study. All authors reviewed and approved the final version of the manuscript.

Corresponding authors

Correspondence to Shahid Farooq or Mubshar Hussain.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, K., Aziz, A., Naeem, M. et al. Combined Application of Zinc and Silicon Improved Growth, Gas Exchange Traits, and Productivity of Maize (Zea mays L.) Under Water Stress. Silicon 16, 831–841 (2024). https://doi.org/10.1007/s12633-023-02732-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02732-9

Keywords

Navigation