Skip to main content

Advertisement

Log in

Recent Advances and Prospects in Silicon Nanowire Sensors: A Critical Review

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Due to the distinctive optical, mechanical and electrical characteristics, silicon nanowire (SilNW), one of the one dimensional nanostructures, has become a potential sensing nanomaterial. SilNWs have drawn interest in high-sensitive sensor fabrication, primarily because of their large surface-volume ratios, which significantly enhanced the detection limit to femtomolar concentrations and also provided high sensitivity. Due to its high charge sensitivity, SilNW FET-based sensors had been employed extensively for sensing various chemical as well as biological species. In this work, the sensing performance and applications of different SilNW biosensors, gas sensors, chemical and metal ion sensors were studied. In this study, we have also elaborated the most current developments as well as the sensing performance of various SilNW-based Covid-19 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sreejith S, Ajayan J, Kollem S, Sivasankari B (2022) A comprehensive review on thin film amorphous silicon solar cells. Silicon 14:8277–8293

    Article  CAS  Google Scholar 

  2. Sreejith S, Ajayan J, Radhika JM, Sivasankari B, Tayal S, Saravanan M (2023) A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 206:112202

    Article  Google Scholar 

  3. Cazimajou T, Mouis M, Legallais M, Nguyen TTT, Ternon C, Salem B, Ghibaudo G (2020) Analysis of the role of inter-nanowire junctions on current percolation effects in silicon nanonet field-effect transistors. Solid State Electronics 168:107725

    Article  CAS  Google Scholar 

  4. Mishra SM, Dey S, Singha T, Mandal S, Dehury AK, Chaudhary YS, Satpati B (2023) Enhanced optical properties and dark I-V characteristics of silicon nanowire-carbon quantum dots heterostructures. Mater Res Bull 164:112262

    Article  CAS  Google Scholar 

  5. Sreejith S, Joseph LMIL, Kollem S, Vijumon VT, Ajayan J (2023) Biodegradable sensors: a comprehensive review. Measurement 219:113261

    Article  Google Scholar 

  6. Sreejith S, Ajayan J, Devasenapati SB, Sivasankari B, Tayal S (2023) Critical review on reliability and short circuit robustness of silicon carbide power MOSFETs. Silicon 15:623–637

    Article  CAS  Google Scholar 

  7. Chen S, van den Berg A, Carlen ET (2015) Sensitivity and detection limit analysis of silicon nanowire bio(chemical) sensors. Sensors Actuators B 209:486–489

    Article  CAS  Google Scholar 

  8. Hasheminia F, Bahari Y, Rajabpour A, Arabha S (2021) Elucidation of thermo-mechanical properties of silicon nanowires from a molecular dynamics perspective. Comput Mater Sci 200:110821

    Article  CAS  Google Scholar 

  9. Mirsian S, Khodadadian A, Hedayati M, Manzour-ol-Ajdad A, Kalantarinejad R, Heitzinger C (2019) A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens Bioelectron 142:111527

    Article  CAS  PubMed  Google Scholar 

  10. Gonchar KA, Moiseev DV, Bozhev IV, Osminkina LA (2021) Influence of H2O2 concentration on the structural and photoluminescent properties of porous silicon nanowires fabricated by metal-assisted chemical etching. Mater Sci Semicond Process 125:105644

    Article  CAS  Google Scholar 

  11. Mussabek G, Lysenko V, Yermukhamed D, Sivakov V, Timoshenko VY (2020) Thermally induced evolution of the structure and optical properties of silicon nanowires. Results in Physics 18:103258

    Article  Google Scholar 

  12. Yang R-r, Song C-k, Chen Y-j, Zeng G-w, Wang J-x, Chen J-h, Zhang W-c (2021) Silicon nanowire-based energetic materials with significantly improved hygroscopicity, energetic materials. Frontiers 2:105–110

    CAS  Google Scholar 

  13. Rashid JIA, Abdullah J, Yusof NA, Hajian R (2013) The development of silicon nanowire as sensing material and its applications. J Nanomater 2013:328093

    Google Scholar 

  14. Yu Y, Chen S, Hu Q, Solomon P, Zhang Z (2021) Ultra-low noise Schottky junction tri-gate silicon nanowire FET on bonded silicon-on-insulator substrate. IEEE Electron Device Lett 42:469–472

    Article  CAS  Google Scholar 

  15. Fobelets K, Meghani M, Li C (2014) Influence of minority carrier gas donors on low-frequency noise in silicon nanowires. IEEE Trans Nanotechnol 13:1176–1180

    Article  Google Scholar 

  16. Agarwal A, Buddharaju K, Lao IK, Singh N, Balasubramanian N, Kwong DL (2008) Silicon nanowire sensor array using top–down CMOS technology. Sensors Actuators A 145–146:207–213

    Article  Google Scholar 

  17. Toan NV, Ito K, Tuoi TTK, Toda M, Po-Hung Chen MFM, Sabri J, Li TO (2022) Micro-heat sink based on silicon nanowires formed by metal-assisted chemical etching for heat dissipation enhancement to improve performance of micro-thermoelectric generator. Energy Convers Manag 267:115923

    Article  Google Scholar 

  18. Tsuchiya T, Hemmi T, Jun-ya Suzuki Y, Hirai OT (2016) Tensile fracture of integrated single-crystal silicon nanowire using MEMS electrostatic testing device. Procedia Structural Integrity 2:1405–1412

    Article  Google Scholar 

  19. Pakzad SZ, Esfahani MN, Alaca BE (2023) The role of native oxide on the mechanical behavior of silicon nanowires. Mat Today Comm 34:105002

    Article  Google Scholar 

  20. Shalabny A, Buonocore F, Celino M, Zhang L, Sardashti K, Härth M, Schubert DW, Bashouti MY (2022) Enhancing the electronic properties of VLS-grown silicon nanowires by surface charge transfer. Appl Surf Sci 599:153957

    Article  CAS  Google Scholar 

  21. Mazzetta I, Rigoni F, Irrera F, Riello P, Quaranta S, Latini A, Palma F (2021) Large-scale CMOS-compatible process for silicon nanowires growth and BC8 phase formation. Solid State Electron 186:108093

    Article  CAS  Google Scholar 

  22. Adhila TK, Elangovan H, Chattopadhyay K, Barshilia HC (2021) Kinked silicon nanowires prepared by two-step MACE process: synthesis strategies and luminescent properties. Mater Res Bull 140:111308

    Article  CAS  Google Scholar 

  23. Ray U, Sarkar S, Banerjee D (2022) Silicon nanowires as an efficient material for hydrogen evolution through catalysis: a review, Catal Today. https://doi.org/10.1016/j.cattod.2022.11.025

  24. Gebavi H, Ristic D, Baran N, Marcius M, Gasparic V, Syed K, Ivanda M (2021) Development of silicon nanowires based on Ag-au metal alloy seedsystem for sensing technologies. Sensors Actuators A 331:112931

    Article  CAS  Google Scholar 

  25. Ghiass MA, Armini S, Carli M, Caro AM, Cherman V, Ogi J, Oda S, Moktadir Z, Tsuchiya Y, Mizuta H (2011) Temperature insensitive conductance detection with surface-functionalised silicon nanowire sensors. Microelectron Eng 88:1753–1756

    Article  Google Scholar 

  26. Zhang G-J, Ning Y (2012) Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 749:1–15

    Article  CAS  PubMed  Google Scholar 

  27. Grieshaber D, MacKenzie R, Voros J, Reimhult E (2008) Electrochemical biosensors - sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Namdari P, Daraee H, Eatemadi A (2016) Recent advances in silicon nanowire biosensors: synthesis methods. Propert, Appl, Nanoscale Res Lett 11:406

    Article  Google Scholar 

  29. Shen M-Y, Li B-R, Li Y-K (2014) Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens Bioelectron 60:101–111

    Article  CAS  PubMed  Google Scholar 

  30. Ivanov YD, Romanova TS, Malsagova KA, Pleshakova TO, Archakov AI (2021) Use of silicon nanowire sensors for early cancer diagnosis. Molecules 26:3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cattani-Scholz A, Pedone D, Dubey M, Neppl S, Nickel B, Feulner P, Schwartz J, Abstreiter G, Tornow M (2008) Organophosphonate-based PNA functionalization of silicon nanowires for label-free DNA detection. ACS Nano 2:1653–1660

    Article  CAS  PubMed  Google Scholar 

  32. Guo-Jun Zhang L, Zhang MJ, Huang ZHH, Luo GKIT, Lim E-JA, Kang TG, Chen Y (2010) Silicon nanowire biosensor for highly sensitive and rapid detection of dengue virus. Sensors Actuators B 146:138–144

    Article  Google Scholar 

  33. Ryu S-W, Kim C-H, Han J-W, Kim C-J, Jung C (2010) Hyun Gyu Park, Yang-Kyu Choi, gold nanoparticle embedded silicon nanowire biosensor for applications of label-free DNA detection. Biosens Bioelectron 25:2182–2185

    Article  CAS  PubMed  Google Scholar 

  34. Guo-Jun Zhang ZHH, Luo MJ, Huang GKIT, Lim E-JA (2010) Morpholino-functionalized silicon nanowire biosensor for sequence-specific label-free detection of DNA. Biosens Bioelectron 25:2447–2453

    Article  PubMed  Google Scholar 

  35. Kwon DH, An HH, Hee-Soo Kim JH, Lee SH, Suh YH, Kim CSY (2011) Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Appl Surf Sci 257:4650–4654

    Article  CAS  Google Scholar 

  36. Zhang G-J, Huang MJ, Ang J’AJ, Liu ET, Desai KV (2011) Self-assembled monolayer-assisted silicon nanowire biosensor for detection of protein–DNA interactions in nuclear extracts from breast cancer cell. Biosens Bioelectron 26:3233–3239

    Article  CAS  PubMed  Google Scholar 

  37. Kulkarni A, Xu Y, Ahn C, Amin R, Park SH, Kim T, Lee M (2012) The label free DNA sensor using a silicon nanowire array. J Biotechnol 160:91–96

    Article  CAS  PubMed  Google Scholar 

  38. Duan X, Li Y, Rajan NK, Routenberg DA, Modis Y, Reed MA (2012) Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat Nanotechnol 7:401–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Serre P, Ternon C, Stambouli V, Periwal P, Baron T (2013) Fabrication of silicon nanowire networks for biological sensing. Sensors Actuators B 182:390–395

    Article  CAS  Google Scholar 

  40. Jia-Yo W, Tseng C-L, Yang-Kao Wang YY (2013) Keng-Liang Ou, Chi-Chang Wu, detecting interleukin-1β genes using a N2O plasma modified silicon nanowire biosensor. J Exp Clin Med 5:12–16

    Article  Google Scholar 

  41. Wang H, Mu L, She G, Xu H, Shi W (2014) Fluorescent biosensor for alkaline phosphatase based on fluorescein derivatives modified silicon nanowires. Sensors Actuators B 203:774–781

    Article  CAS  Google Scholar 

  42. Jayakumar G, Asadollahi A, Hellström P-E, Garidis K, Östling M (2014) Silicon nanowires integrated with CMOS circuits for biosensing application. Solid State Electron 98:26–31

    Article  CAS  Google Scholar 

  43. Shen S-H, Wang I-S, Cheng H, Lin C-T (2015) An enhancement of high-k/oxide stacked dielectric structure forsilicon-based multi-nanowire biosensor in cardiac troponin I detection. Sensors Actuators B 218:303–309

    Article  CAS  Google Scholar 

  44. Adam T, Hashim U (2015) Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens Bioelectron 67:656–661

    Article  CAS  PubMed  Google Scholar 

  45. Lee J, Jang J, Choi B, Yoon J, Kim J-Y, Choi Y-K, Kim DM, Kim DH, Choi S-J (2015) A highly responsive silicon nanowire/amplifier MOSFET hybrid biosensor. Sci Rep 5:12286

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yen L-C, Pan T-M, Lee C-H, Chao T-S (2016) Label-free and real-time detection of ferritin using a horn-like polycrystalline-silicon nanowire field-effect transistor biosensor. Sensors Actuators B 230:398–404

    Article  CAS  Google Scholar 

  47. Rahman SFA, Yusof NA, Hashim U, Hushiarian R, Nuzaihan MNM, Hamidon MN, Zawawi RM, Fathil MFM (2016) Enhanced sensing of dengue virus DNA detection using O2 plasma treated-silicon nanowire based electrical biosensor. Anal Chim Acta 942:74–85

    Article  CAS  PubMed  Google Scholar 

  48. Kim K, Park C, Kwon D, Kim D, Meyyappan M, Jeon S (2016) Jeong-Soo Lee, silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens Bioelectron 77:695–701

    Article  CAS  PubMed  Google Scholar 

  49. Nuzaihan M, Hashim U, Arshad MKM, Kasjoo SR, Rahman SFA, Ruslinda AR, Fathil MFM, Adzhri R, Shahimin MM (2016) Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control. Biosens Bioelectron 83:106–114

    Article  CAS  Google Scholar 

  50. Presnova G, Presnov D, Krupenin V, Grigorenko V, Trifonov A, Andreeva I, Ignatenko O, Egorov A, Rubtsova M (2017) Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens Bioelectron 88:283–289

    Article  CAS  PubMed  Google Scholar 

  51. Borgne BL, Pichon L, Salaun AC, Bihan BL, Anne Jolivet-Gougeon S, Martin RR, de Sagazan O (2018) Bacteria electrical detection using 3D silicon nanowires based resistor, Sensors & Actuators:B. Chemical 273:1794–1799

    Google Scholar 

  52. Zhou K, Zhao Z, Pan L, Wang Z (2019) Silicon nanowire pH sensors fabricated with CMOS compatible sidewall mask technology. Sensors Actuators: B Chem 279:111–121

    Article  CAS  Google Scholar 

  53. Zhang H, Kikuchi N, Ohshima N, Kajisa T, Sakata T, Izumi T, Sone H (2020) Design and fabrication of silicon nanowire-based biosensors with integration of critical factors: toward ultrasensitive specific detection of biomolecules. ACS Appl Mater Interfaces 12:51808–51819

    Article  CAS  PubMed  Google Scholar 

  54. Gao A, Wang Y, Zhang D, He Y, Zhang L, Liu Y, Wang Y, Song H, Li T (2020) Highly sensitive and selective detection of human-derived volatile organic compounds based on odorant binding proteins functionalized silicon nanowire array. Sensors Actuators: B Chem 309:127762

    Article  CAS  Google Scholar 

  55. Li D, Chen H, Fan K, Labunov V, Lazarouk S, Yue X, Liu C, Yang X, Dong L, Wang G (2021) A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Biosens Bioelectron 181:113147

    Article  CAS  PubMed  Google Scholar 

  56. Gautam V, Kumar A, Kumar R, Jain VK, Nagpal S (2021) Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Mater Sci Semicond Process 123:105571

    Article  CAS  Google Scholar 

  57. Benserhir Y, Anne-Claire Salaün F, Geneste N, Oliviero L, Pichon AJ-G (2022) Silicon nanowires-based biosensors for the electrical detection of Escherichia coli. Biosens Bioelectron 216:114625

    Article  CAS  PubMed  Google Scholar 

  58. Zhao W, Hu J, Liu J, Li X, Sun S, Luan X, Zhao Y, Wei S, Li M, Zhang Q, Huang C (2022) Si nanowire bio-FET for electrical and label-free detection of cancer cell-derived exosomes. Microsystems Nanoengineer 8:57

    Article  CAS  Google Scholar 

  59. Santana JE, Sosa AN, Santiago FD, Miranda A, Perez LA, Trejo A, Salazar F, Cruz-Irisson M (2023) Highly sensitive amphetamine drug detection based on silicon nanowires: theoretical investigation. Surfaces Interfaces 36:102584

    Article  CAS  Google Scholar 

  60. Santana JE, García KJ, Santiago FD, Miranda A, Perez-Figueroa SE, Gonzalez JE, Perez LA, Cruz-Irisson M (2023) Selective sensing of DNA/RNA nucleobases by metal-functionalized silicon nanowires: a DFT approach. Surfaces Interfaces 36:102529

    Article  CAS  Google Scholar 

  61. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    Article  CAS  PubMed  Google Scholar 

  62. Abiri H, Abdolahad M, Gharooni M, Hosseini SA, Janmaleki M, Azimi S, Hosseini M, Mohajerzadeh S (2015) Monitoring the spreading stage of lung cells by silicon nanowire electrical cell impedance sensor for cancer detection purposes. Biosens Bioelectron 68:577–585

    Article  CAS  PubMed  Google Scholar 

  63. Chen Y, Guo J, Muhammad H, Kang Y, Ary SK (2016) CMOS-compatible silicon-nanowire-based coulter counter for cell enumeration. IEEE Trans Biomed Eng 63:311–315

    Article  PubMed  Google Scholar 

  64. Ouhibi A, Raouafi A, Lorrain N, Guendouz M, Raouafi N, Moadhen A (2021) Functionalized SERS substrate based on silicon nanowires for rapid detection of prostate specific antigen, Sensors & Actuators:B. Chemical 330:129352

    CAS  Google Scholar 

  65. Lu Z, Liu T, Zhou X, Yang Y, Liu Y, Zhou H, Wei S, Zhai Z, Wu Y, Sun F, Wang Z, Li T, Hong J (2022) Rapid and quantitative detection of tear MMP-9 for dry eye patients using a novel silicon nanowire-based biosensor. Biosens Bioelectron 214:114498

    Article  CAS  PubMed  Google Scholar 

  66. Vu C-A, Lai H-Y, Chang C-Y, Chan W-H, Chen W-Y (2022) Optimizing surface modification of silicon nanowire field-effect transistors by polyethylene glycol for MicroRNA detection. Colloids Surfaces B:Biointerfaces 209:112142

    Article  CAS  PubMed  Google Scholar 

  67. Muratore KA, Zhou D, Du JJ, Chlystek JS, Motesadi K, Larsen EK, Molgora BM, Lee TC, Pamarti S, Erramilli S, Mohanty P (2023) Alanine aminotransferase assay biosensor platform using silicon nanowire field effect transistors. Commun Eng 2:8

    Article  Google Scholar 

  68. Lehoucq G, Bondavalli P, Xavier S, Legagneux P, Abbyad P, Baroud CN, Pribat D (2012) Highly sensitive pH measurements using a transistor composed of a large array of parallel silicon nanowires. Sensors Actuators B 171–172:127–134

  69. Lale A, Grappin A, Lecestre A, Mazenq L, Launay J, Temple-Boyer P (2023) Top-down integration of suspended N+/P/N+ silicon-nanowire-based ion-sensitive field effect transistors for pH analysis at the submicronic scale. Thin Solid Films 764:139609

    Article  CAS  Google Scholar 

  70. Li H-H, Yang C-E, Kei C-C, Chung-Yi S, Dai W-S, Tseng J-K, Yang P-Y, Chou J-C, Cheng H-C (2013) Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor. Thin Solid Films 529:173–176

    Article  CAS  Google Scholar 

  71. Cho S-K, Cho W-J (2021) Ultra-high sensitivity pH-sensors using silicon nanowire channel dual-gate field-effect transistors fabricated by electrospun polyvinylpyrrolidone nanofibers pattern template transfer. Sensors Actuators: B. Chem 326:128835

    Article  CAS  Google Scholar 

  72. Zhou K, Zhao Z, Yu P, Wang Z (2020) Highly sensitive pH sensors based on double-gate silicon nanowire field effect transistors with dual-mode amplification, Sensors & Actuators:B. Chemical 320:128403

    CAS  Google Scholar 

  73. Oh JY, Jang H-J, Cho W-J, Islam MS (2012) Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane. Sensors Actuators B 171–172:238–243

  74. Lin J-C, Huang B-R, Yang Y-K (2013) IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sensors Actuators B 184:27–32

    Article  CAS  Google Scholar 

  75. Park I, Li Z, Li X, Pisano AP, Williams RS (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosens Bioelectron 22:2065–2070

    Article  CAS  PubMed  Google Scholar 

  76. Lu N, Gao A, Dai P, Mao H, Zuo X, Fan C, Wang Y, Li T (2015) Ultrasensitive detection of dual cancer biomarkers with integrated CMOS-compatible nanowire arrays. Anal Chem 87:11203–11208

    Article  CAS  PubMed  Google Scholar 

  77. Zhu K, Zhang Y, Li Z, Zhou F, Feng K, Dou H, Wang T (2015) Simultaneous detection of α-fetoprotein and Carcinoembryonic antigen based on Si nanowire field-effect transistors. Sensors 15:19225–19236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang X, Fan Y, Wu Z, Liu C (2019) A silicon nanowire Array biosensor fabricated by complementary metal oxide semiconductor technique for highly sensitive and selective detection of serum Carcinoembryonic antigen. Micromachines 10:764

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gao A, Yang X, Tong J, Zhou L, Wang Y, Zhao J, Mao H, Li T (2017) Multiplexed detection of lung cancer biomarkers in patients serum with CMOS-compatible silicon nanowire arrays. Biosens Bioelectron 91:482–488

    Article  CAS  PubMed  Google Scholar 

  80. Chen H-C, Chen Y-T, Tsai R-Y, Chen M-C, Chen S-L, Xiao M-C, Chen C-L, Hua M-Y (2015) A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron 66:198–207

    Article  CAS  PubMed  Google Scholar 

  81. Malsagova KA, Ivanov YD, Pleshakova TO, Kaysheva AL, Shumov ID, Kozlov AF, Archakov AI, Popov VP, Fomin BI, Latyshev AV (2015) A SOI-nanowire biosensor for the multiple detection of D-NFATc1 protein in the serum. Anal Methods 7:8078–8085

    Article  CAS  Google Scholar 

  82. Pham VB, Le TTT, Phan TNK, Nguyen TT, Dang CM (2018) Application of silicon nanowire for detection and quantitative analysis of alpha-fetoprotein biomarker. Int J Nanotechnol 15:1–3

    Article  Google Scholar 

  83. Yang C-Y, Chiang H-C, Kuo C-J, Hsu C-W, Chan S-F, Lin Z-Y, Lin C-H, Chen Y-T (2018) Hepatocellular carcinoma diagnosis by detecting α-Fucosidase with a silicon nanowire field-effect transistor biosensor. ECS J Solid State Sci Technol 7:Q3153–Q3158

    Article  CAS  Google Scholar 

  84. Zida SI, Chu-Chun Yang YL, Khung Y-DL (2020) Fabrication and characterization of an Aptamer-based N-type silicon nanowire FET biosensor for VEGF detection. J Med Biol Eng 40:601–609

    Article  Google Scholar 

  85. Tran DP, Wolfrum B, Stockmann R, Pai J-H, Pourhassan-Moghaddam M, Offenhäusser A, Thierry B (2015) CMOS compatible silicon nanowires on-a-Chip: fabrication and pre-clinical validation for the detection of a cancer prognostic protein marker in serum. Anal Chem 87:1662–1668

    Article  CAS  PubMed  Google Scholar 

  86. Puppo F, Doucey M-A, Delaloye J-F, Moh TSY, Pandraud G, Sarro PM, De Micheli G, Carrara S (2016) SiNW-FET in-air biosensors for high sensitive and specific detection in breast tumor extract. IEEE Sensors J 16:3374–3381

    Article  CAS  Google Scholar 

  87. Lu N, Gao A, Dai P, Li T, Wang Y, Gao X, Song S, Fan C, Wang Y (2013) Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. Methods 63:212–218

    Article  CAS  PubMed  Google Scholar 

  88. Gao A, Lu N, Wang Y, Dai P, Li T, Gao X, Wang Y, Fan C (2012) Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett 12:5262–5268

    Article  CAS  PubMed  Google Scholar 

  89. Malsagova KA, Pleshakova TO, Galiullin RA, Kozlov AF, Romanova TS, Shumov ID, Popov VP, Tikhonenko FV, Glukhov AV, Smirnov AY, Gadzhieva OA, Bashiryan BA, Shimansky VN, Archakov AI, Ivanov YD (2020) SOI-nanowire biosensor for the detection of Glioma-associated miRNAs in plasma. Chemosensors 8:95

    Article  CAS  Google Scholar 

  90. Kruchinina MV, Prudnikova YI, Kurilovich SA, Gromov AA, Kruchinin VN, Atuchin VV, Naumova OV, Spesivtsev EV, Volodin V, Peltek SE, Shuvalov GV, Vladimir G (2017) Ellipsometry, raman spectroscopy and soi-nanowire biosensor in diagnosis of colorectalcancer. Siberian J Oncol 16:32–41

    Article  Google Scholar 

  91. Capua L, Sprunger Y, Elettro H, Risch F, Grammoustianou A, Midahuen R, Ernst T, Barraud S, Gill R, Ionescu AM (2022) Label-free C-reactive protein Si nanowire FET sensor arrays with super-Nernstian Back-gate operation. IEEE Trans Electron Devices 69:2159–2165

    Article  CAS  Google Scholar 

  92. Shen F, Tan M, Wang Z, Yao M, Xu Z, Wu Y, Wang J, Guo X, Zhu T (2011) Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. Environ Sci Technol 45:7473–7480

    Article  CAS  PubMed  Google Scholar 

  93. Shen F, Wang J, Xu Z, Wu Y, Chen Q, Li X, Jie X, Li L, Yao M, Guo X, Zhu T (2012) Rapid flu diagnosis using silicon nanowire sensor. Nano Lett 12:3722–3730

    Article  CAS  PubMed  Google Scholar 

  94. Sreejith S, Ajayan J, Reddy NVU, Devasenapati B, Rebelli S (2024) Analysis of Covid-19 CT chest image classification using Dl4jMlp classifier and multilayer perceptron in WEKA environment, current medical. Imaging 20:e170423215872

    Google Scholar 

  95. Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, Lee C-S, Jun S, Park D, Kim HG, Kim S-J, Lee J-O, Kim BT, Park EC, Kim SI (2020) Rapid detection of COVID-19 causative virus (SARSCoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based, vol 14, Biosensor, ACS Nano, pp 5135–5142

  96. Wasfi A, Awwad F, Qamhieh N, Murshidi BA, Palakkott AR, Gelovani JG (2022) Real-time COVID-19 detection via graphite oxide-based field-effect transistor biosensors decorated with Pt/Pd nanoparticles. Sci Rep 12:18155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Poghossian A, Jablonski M, Molinnus D, Wege C, Schöning MJ (2020) Field-effect sensors for virus detection: from Ebola to SARS-CoV-2 and plant viral enhancers. Front Plant Sci 11:598103

    Article  PubMed  PubMed Central  Google Scholar 

  98. Samson R, Navale GR, Dharne MS (2020) Biosensors:frontiers in rapid detection of COVID-19, 3. Biotech 10:385

    Google Scholar 

  99. Wasfi A, Awwad F, Gelovani JG, Qamhieh N, Ayesh AI (2022) COVID-19 detection via silicon nanowire field-effect transistor: setup and Modeling of its function. Nanomaterials 12:2638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gao B, Chavez RAR, Malkawi WI, Keefe DW, Smith R, Haim H, Salem AK, Toor F (2022) Sensitive detection of SARS-CoV-2 spike protein using vertically-oriented silicon nanowire array-based biosensor. Sensing Bio-Sensing Res 36:100487

    Article  Google Scholar 

  101. Chi-Chang W (2022) Polycrystalline silicon nanowire field effect transistor biosensors for SARS-CoV-2 detection. J Electrochem Soc 169:077514

    Article  Google Scholar 

  102. Miranda A, de Santiago F, Pérez LA, Cruz-Irisson M (2017) Silicon nanowires as potential gas sensors: a density functional study. Sensors Actuators B 242:1246–1250

    Article  CAS  Google Scholar 

  103. Akbari-Saatlu M, Procek M, Mattsson C, Thungström G, Nilsson H-E, Xiong W, Xu B, Li Y, Radamson HH (2020) Silicon nanowires for gas sensing. A Review, Nanomaterials 10:2215

    Article  CAS  PubMed  Google Scholar 

  104. Paska Y, Haick H (2012) Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. ACS Applied Materials Interfaces 4:2604–2617

    Article  CAS  PubMed  Google Scholar 

  105. Hsu H-F, Chen C-A, Liu S-W, Tang C-K (2017) Fabrication and gas-sensing properties of Ni-silicide/Si nanowires. Nanoscale Res Lett 12:182

    Article  PubMed  PubMed Central  Google Scholar 

  106. Raman S, Ravi Sankar A, Sindhuja M (2023) Advances in silicon nanowire applications in energy generation, storage, sensing, and electronics: a review. Nanotechnology 34:182001

    Article  Google Scholar 

  107. Wan J, Deng S-R, Yang R, Shu Z, Lu B-R, Xie S-Q, Chen Y, Huq E, Liu R, Qu X-P (2009) Silicon nanowire sensor for gas detection fabricated by nanoimprint on SU8/SiO2/PMMA trilayer. Microelectron Eng 86:1238–1242

    Article  CAS  Google Scholar 

  108. Gao C, Deng S-R, Wan J, Lu B-R, Liu R, Huq E, Qu X-P, Chen Y (2010) 22 nm silicon nanowire gas sensor fabricated by trilayer nanoimprint and wet etching. Microelectron Eng 87:927–930

    Article  CAS  Google Scholar 

  109. Skucha K, Fan Z, Jeon K, Javey A, Boser B (2010) Palladium/silicon nanowire Schottky barrier-based hydrogen sensors. Sensors Actuators B 145:232–238

    Article  CAS  Google Scholar 

  110. Gao C, Xu Z-C, Deng S-R, Wan J, Chen Y, Liu R, Huq E (2011) Xin-Ping Qu, silicon nanowires by combined nanoimprint and angle deposition for gas sensing applications. Microelectron Eng 88:2100–2104

    Article  CAS  Google Scholar 

  111. Yang L, Lin H, Zhang Z, Cheng L, Ye S, Shao M (2013) Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine. Sensors Actuators B 177:260–264

    Article  CAS  Google Scholar 

  112. Wu Y, Hu M, Qin Y, Wei X, Ma S, Yan D (2014) Enhanced response characteristics of p-porous silicon (substrate)/p-TeO2(nanowires) sensor for NO2detection. Sensors Actuators B 195:181–188

    Article  CAS  Google Scholar 

  113. Naama S, Hadjersi T, Keffous A, Nezzal G (2015) CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater Sci Semicond Process 38:367–372

    Article  CAS  Google Scholar 

  114. Qin Y, Liu D, Zhang T, Cui Z (2017) Ultrasensitive silicon nanowire sensor developed by a special Ag modification process for rapid NH3 detection. ACS Appl Mater Interfaces 9:28766–28773

    Article  CAS  PubMed  Google Scholar 

  115. Qin Y, Wang Z, Liu D, Wang K (2017) Dendritic composite array of silicon nanowires/WO3 nanowires for sensitive detection of NO2 at room temperature. Mater Lett 207:29–32

    Article  CAS  Google Scholar 

  116. Qiang X, Hu M, Zhao B, Qin Y, Zhang T, Zhou L, Liang J (2018) Preparation of porous silicon/Pd-loaded WO3 nanowires for enhancement of ammonia sensing properties at room temperature. Mater Sci Semicond Process 79:113–118

    Article  CAS  Google Scholar 

  117. Yun J, Ahn J-H, Moon D-I, Choi Y-K, Park I (2019) Joule heated and suspended silicon nanowire based sensor for low-power and stable hydrogen detection. ACS Appl Mat Interfaces 11:42349–42357

    Article  CAS  Google Scholar 

  118. Qin Y, Zang J (2021) Stable clusters array of silicon nanowires developed by top-plating technique as a high-performance gas sensor. Physica E:Low-dimensional Syst Nanostruc 127:114508

    Article  CAS  Google Scholar 

  119. Mukherjee A, Gnaim M, Tov IS, Hargreaves L, Hayon J, Shluger A, Rosenwaks Y (2021) Ultrasensitive hydrogen detection by electrostatically formed silicon nanowire decorated by palladium nanoparticles. Sensors Actuators:B Chem 346:130509

    Article  CAS  Google Scholar 

  120. Qin Y, Wang X, Zang J (2021) Room-temperature ethanol sensor based on ZIF-67 modified silicon nanowires with expanded detection range and enhanced moisture resistance. Chem Phys Lett 765:138302

    Article  CAS  Google Scholar 

  121. Dwivedi P, Dhanekar S, Das S (2021) Near room temperature sensing by In2O3 decorated silicon nanowires for sensitive detection of ethanol. IEEE Sensors J 21:7275–7282

    Article  CAS  Google Scholar 

  122. Song X, Hu R, Xu S, Liu Z, Wang J, Shi Y, Xu J, Chen K, Yu L (2021) Highly sensitive ammonia gas detection at room temperature by Integratable silicon nanowire field-effect sensors. ACS Appl Mater Interfaces 13:14377–14384

    Article  CAS  PubMed  Google Scholar 

  123. Kashyap V, Pawar H, Kumar C, Chaudhary N, Saxena K (2022) Analysis of synthesized doped vertical silicon nanowire arrays for effective sensing of nitrogen dioxide: as gas sensors. Front Mat 9:1022317

    Article  Google Scholar 

  124. Nath P, Sarkar D (2022) Ammonia sensing by silicon nanowires (SINWs) obtained through metal assisted electrochemical etching. Mat Today: Proceed 57:224–227

    CAS  Google Scholar 

  125. Chaujar R, Yirak MG (2023) Sensitivity investigation of Junctionless gate-all-around silicon nanowire field-effect transistor-based hydrogen gas sensor. Silicon 15:609–621

    Article  CAS  Google Scholar 

  126. Demami F, Ni L, Rogel R, Salaun AC, Pichon L (2012) Silicon nanowires based resistors as gas sensors. Sensors Actuators B 170:158–162

    Article  CAS  Google Scholar 

  127. Huang J, Zhu Y, Zhong H, Yang X, Li C (2014) Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl Mater Interfaces 6:7055–7062

    Article  CAS  PubMed  Google Scholar 

  128. Pichon L, Salaün AC, Wenga G, Rogel R, Jacques E (2014) Ammonia sensors based on suspended silicon nanowires. Procedia Eng 87:1003–1006

    Article  CAS  Google Scholar 

  129. Choi B, Jae-Hyuk Ahn J, Lee J, Yoon J, Lee M, Jeon DM, Kim DH, Kim IP, Choi S-J (2015) A bottom-gate silicon nanowire field-effect transistor with functionalized palladium nanoparticles for hydrogen gas sensors. Solid State Electron 114:76–79

    Article  CAS  Google Scholar 

  130. Zhang W, Hu M, Liu X, Wei Y, Li N, Qin Y (2016) Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO2 gas sensor. J Alloys Compd 679:391–399

    Article  CAS  Google Scholar 

  131. Lee K, Dae-Hyun Baek H, Na J, Choi JK (2018) Simple fabrication method of silicon/tungsten oxide nanowires heterojunction for NO2 gas sensors. Sensors Actuators B 265:522–528

    Article  CAS  Google Scholar 

  132. Ocak YS, Zeggar ML, Genisel MF, Uzun NU, Aida MS (2021) CO2 sensing behavior of vertically aligned Si nanowire/ZnO structures. Mater Sci Semicond Process 134:106028

    Article  CAS  Google Scholar 

  133. Jeribi M, Nafie N, Boujmil MF, Bouaicha M (2021) Response modulation of silicon nanowires-based sensor to carbon number in petroleum vapor detection. Fuel 304:121260

    Article  CAS  Google Scholar 

  134. Zhao S, Li Z, Wang G, Liao J, Lv S, Zhu Z (2018) Highly enhanced response of MoS2/porous silicon nanowire heterojunctions to NO2 at room temperature. RSC Adv 8:11070–11077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kim J, Oh SD, Kim JH, Shin DH, Kim S, Choi SH (2014) Graphene/Si-nanowire heterostructure molecular sensors. Sci Rep 4:5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Demami F, Ni L, Rogel R, Salaun AC, Pichon L (2010) Silicon nanowires synthesis for chemical sensor applications. Procedia Eng 5:351–354

    Article  CAS  Google Scholar 

  137. Zhou XT, Hu JQ, Li CP, Ma DDD, Lee CS, Lee ST (2003) Silicon nanowires as chemical sensors. Chem Phys Lett 369:220–224

    Article  CAS  Google Scholar 

  138. Lee J, Choi B, Hwang S, Lee JH, Park B-G, Park TJ, Kim DM, Kim DH, Choi S-J (2014) Investigation of sensor performance in accumulation- and inversion-mode silicon nanowire pH sensors. IEEE Trans Electron Devices 61:1607-1610

  139. Abbas N, Kim J, Yeom J, Lee S, Lu X (2021) Seok-min Kim, monolithic fabrication of vertical silicon nanowire gas sensor with a top porous copper electrode using glancing angle deposition. J Mater Sci Mater Electron 32:5233–5242

    Article  CAS  Google Scholar 

  140. Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    Article  CAS  PubMed  Google Scholar 

  141. Bi X, Wong WL, Ji W, Agarwal A, Balasubramanian N (2008) Kun-Lin Yang, development of electrochemical calcium sensors by using silicon nanowires modified with phosphotyrosine. Biosens Bioelectron 23:1442–1448

    Article  CAS  PubMed  Google Scholar 

  142. Bi X, Agarwal A, Balasubramanian N (2008) Kun-Lin Yang, Tripeptide-modified silicon nanowire based field-effect transistors as real-time copper ion sensors. Electrochem Commun 10:1868–1871

    Article  CAS  Google Scholar 

  143. Bi X, Agarwal A (2009) Kun-Lin Yang, Oligopeptide-modified silicon nanowire arrays as multichannel metal ion sensors. Biosens Bioelectron 24:3248–3251

    Article  CAS  PubMed  Google Scholar 

  144. Yin J, Qi X, Yang L, Hao G, Li J, Zhong J (2011) A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim Acta 56:3884–3889

    Article  CAS  Google Scholar 

  145. Yan Q, Wang Z, Zhang J, Peng H, Chen X, Hou H, Liu C (2012) Nickel hydroxide modified silicon nanowires electrode for hydrogen peroxide sensor applications. Electrochim Acta 61:148–153

    Article  CAS  Google Scholar 

  146. Georgiev YM, Petkov N, McCarthy B, Yu R, Djara V, O’Connell D, Lotty O, Nightingale AM, Thamsumet N, deMello JC, Blake A, Das S, Holmes JD (2014) Fully CMOS-compatible top-down fabrication of sub-50 nm silicon nanowire sensing devices. Microelectron Eng 118:47–53

    Article  CAS  Google Scholar 

  147. Livi P, Shadmani A, Wipf M, Stoop RL, Rothe J, Chen Y, Calame M, Schönenberger C, Hierlemann A (2014) Sensor system including silicon nanowire ion sensitive FET arrays and CMOS readout. Sensors Actuators B 204:568–577

    Article  CAS  Google Scholar 

  148. Cao X, Mu L, Chen M, She G (2018) A facile fluorescent sensor based on silicon nanowires for dithionite. Appl Surf Sci 441:388–393

    Article  CAS  Google Scholar 

  149. Cho S-K, Cho W-J (2021) Highly sensitive and selective sodium ion sensor based on silicon nanowire dual gate field-effect transistor. Sensors 21:4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Daoudi K, Gaidi M, Columbus S, Shameer M, Alawadhi H (2022) Hierarchically assembled silver nanoprism-graphene oxide-silicon nanowire arrays for ultrasensitive surface enhanced Raman spectroscopy sensing of atrazine. Mater Sci Semicond Process 138:106288

    Article  CAS  Google Scholar 

  151. Luo L, Jie J, Zhang W, He Z, Wang J, Yuan G, Zhang W, Wu LCM (2009) Shuit-Tong Lee, silicon nanowire sensors for Hg 2+ and Cd 2+ ions. Appl Phyisics Lett 94:193101

    Article  Google Scholar 

  152. Xu W, Mu L, Miao R, Zhang T, Shi W (2011) Fluorescence sensor for Cu(II) based on R6G derivatives modified silicon nanowires. J Lumin 131:2616–2620

    Article  CAS  Google Scholar 

  153. Clavaguera S, Raoul N, Carella A, Delalande M, Celle C (2011) Jean-Pierre Simonato, development of an autonomous detector for sensing of nerve agents based on functionalized silicon nanowire field-effect transistors. Talanta 85:2542–2545

    Article  CAS  PubMed  Google Scholar 

  154. Chen X, Zhang J, Wang Z, Yan Q, Hui S (2011) Humidity sensing behavior of silicon nanowires with hexamethyldisilazane modification. Sensors Actuators B 156:631–636

    Article  CAS  Google Scholar 

  155. Wang HY, Wang YQ, Hu QF, Li XJ (2012) Capacitive humidity sensing properties of SiC nanowires grown on silicon nanoporous pillar array. Sensors Actuators B 166-167:451-456

  156. Taghinejad H, Taghinejad M, Abdolahad M, Saeidi A, Mohajerzadeh S (2013) Fabrication and modeling of high sensitivity humidity sensors based on doped silicon nanowires. Sensors Actuators B 176:413–419

    Article  CAS  Google Scholar 

  157. Zhang S, Wang T, Lou L, Tsang WM, Sawada R, Kwong D-L, Lee C (2014) Annularly grooved diaphragm pressure sensor with embedded silicon nanowires for low pressure application. J Microelectromechanical Syst 23:1396–1407

    Article  CAS  Google Scholar 

  158. Wang Z, Song C, Yin H, Zhang J (2015) Capacitive humidity sensors based on zinc oxide nanorods grown on silicon nanowires arrays at room temperature. Sensors Actuators A 235:234–239

    Article  CAS  Google Scholar 

  159. Chen G, Yu B, Li X, Xu X, Li Z, Huang R, Li M (2019) Selective-assembling hybrid Porphyrin-silicon nanowire field-effect transistor (PSNFET) for photonic sensor. IEEE Electron Device Lett 40:812–814

    Article  CAS  Google Scholar 

  160. Kim C, Ahn H, Ji T (2020) Flexible pressure sensors based on silicon nanowire array built by metal-assisted chemical etching. IEEE Electron Device Lett 41:1233–1236

    Article  CAS  Google Scholar 

  161. Rhee J, Kim H, Yang H, Kim S, Lee H (2021) Under-display optical proximity sensor with silicon nanowires. IEEE Sensors J 21:20239–20247

    Article  CAS  Google Scholar 

  162. Yang Y, Duan S, Xiao W, Zhao H (2022) Silver nanowire-based stretchable strain sensors with hierarchical wrinkled structures. Sensors Actuators: A Physical 343:113653

    Article  CAS  Google Scholar 

  163. Lou L, Zhang S, Lim L, Woo-Tae Park H, Feng D-LK, Lee C (2011) Characteristics of NEMS Piezoresistive silicon nanowires pressure sensors with various diaphragm layers. Procedia Eng 25:1433–1436

    Article  CAS  Google Scholar 

  164. Li H, Zhang J, Tao B, Wan L, Gong W (2009) Investigation of capacitive humidity sensing behavior of silicon nanowires. Phys E 41:600–604

    Article  Google Scholar 

  165. Lee J, Jin-Moo Lee JH, Lee WH, Lee MU, Byung-Gook Park DM, Kim Y-JJ, Kim DH (2012) Complementary silicon nanowire hydrogen ion sensor with high sensitivity and voltage output. IEEE Electron Device Lett 33:1768–1770

    Article  CAS  Google Scholar 

  166. Zhang S, Lou L, Gu Y (2017) Development of Silicon Nanowire–Based NEMS Absolute Pressure Sensor through Surface Micromachining. IEEE Electron Device Lett 38:653-656

  167. Singh RR, Malviya N, Priye V (2016) Parametric analysis of silicon nanowire optical rectangular waveguide sensor. IEEE Photon Technol Lett 28:2889–2892

    Article  CAS  Google Scholar 

  168. Nair RS, Perret E, Tedjini S, Baron T (2013) A group-delay-based Chipless RFID humidity tag sensor using silicon nanowires. IEEE Antennas Wireless Propag Lett 12:729–732

    Article  Google Scholar 

  169. Mohamedyaseen A, Kumar PS (2022) The fabrication of high-anisotropy silicon nanowires based on MACE method for photonic sensor. Silicon 14:11417–11427

    Article  CAS  Google Scholar 

  170. Morganti D, Faro MJL, Leonardi AA, Fazio B, Conoci S, Irrera A (2022) Luminescent silicon nanowires as novel sensor for environmental air quality control. Sensors 22:8755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cheng W, Yu L, Kong D, Yu Z, Wang H, Ma Z, Wang Y, Wang J, Pan L, Shi Y (2018) Fast response and low hysterisis fexible pressure sensor base on silicon nanowires. IEEE Electron Device Lett 39:1069–1072

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. S. Sreejith, Dr. J Ajayan and Dr. N.V. Uma Reddy have role in Conceptualization, Methodology, Writing Original Draft, Validation and Investigation. Dr. M. Manikandan have the credits to Software, Formal analysis, Resources, Data Curation, Writing Review and Editing.

Corresponding author

Correspondence to S. Sreejith.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies were in accordance with the ethical standards of the institutional and/or national research committee and with the comparable ethical standards.

For this type of study, formal consent is not required.

Consent for Publication

Authors give consent for the publication of the Submitted Research article in Silicon.

Competing interests

The authors declare no competing interests.

Research Involving Human Participants and/or Animals

Not Applicable.

Informed Consent

Not Applicable.

Conflicts of Interest

The authors declare that there is no conflict of interest reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreejith, S., Ajayan, J., Uma Reddy, N.V. et al. Recent Advances and Prospects in Silicon Nanowire Sensors: A Critical Review. Silicon 16, 485–511 (2024). https://doi.org/10.1007/s12633-023-02723-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02723-w

Keywords

Navigation