Skip to main content
Log in

Investigation of Potential of Mn-Doped C60, Si60 and Al30P30 Nanocages to Oxidize the Formaldehyde to CO2

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The formaldehyde (HCHO) is produced from building materials and it can cause illness and cancer in human. The oxidation of HCHO is acceptable pathway for HCHO purification to protect the human health. The catalytic activity of Manganese (Mn) doped carbon nanocage (Mn-C60), Mn doped silicon nanocage (Mn-Si60) and Mn doped aluminum phosphide nanocage (Mn-Al30P30) as effective catalysts for oxidation of HCHO to carbon dioxide (CO2) are investigated. The acceptable mechanisms for oxidation of HCHO to CO2 on surfaces of Mn-C60, Mn-Si60 and Mn-Al30P30 nanocages as catalysts are examined. Results shown HCHO is oxidized to CO2 on Mn-C60, Mn-Si60 and Mn-Al30P30 nanocage surfaces thought two acceptable mechanisms: (1) HCHO → HHCOO → HCOO → HCO → CO → CO2 and (2) HCHO → HHCOO → HCOO → CO2. The rate-limiting steps of pathways 1 and 2 are HCOO → HCO and HCHO → HHCOO. The metal doped nanocages (Mn-C60, Mn-Si60 and Mn-Al30P30) have excellent potential to development the patheways of HCHO oxidation with high performance. The results have proposed that the new strategy to increase enhance the catalytic ability of metal doped nanocages (Mn-C60, Mn-Si60 and Mn-Al30P30) for HCHO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Casey P, O’Alrien (2022) ACS Energy Lett 7(10):3609–3523

  2. Shinohara K (2022) ACS Catal 12(14):6020–6028

    Article  Google Scholar 

  3. Chen C (2022) ACS Catal 12(6):3604–3614

    Article  CAS  Google Scholar 

  4. Jia Z (2022) Inorg Chem 61(9):3970–3980

    Article  CAS  PubMed  Google Scholar 

  5. Geegbahn PEM (2022) J Phys Chem Al 126(8):1728–1733

    Article  Google Scholar 

  6. Avasare VD (2022) Inorg Chem 61(4):1851–1868

    Article  CAS  PubMed  Google Scholar 

  7. Aluss JA (2021) ACS Catal 11(21):13294–13302

    Article  Google Scholar 

  8. Desmons S (2021) J Am Chem Soc 143(39):16274–16283

    Article  CAS  PubMed  Google Scholar 

  9. Hammond M (2021) J Am Chem Soc 143(28):10553–10559

    Article  CAS  PubMed  Google Scholar 

  10. Zhang D (2021) ACS Catal 11(8):4568–4575

    Article  CAS  Google Scholar 

  11. Quinlivan PJ (2021) Organometallics 40(2):166–183

    Article  CAS  Google Scholar 

  12. Moussa F, Trivin F (1996) Fullerene Sci Technol 4:21–29

    Article  CAS  Google Scholar 

  13. Mori T, Takada H (2006) Toxicology 225:48–54

    Article  CAS  PubMed  Google Scholar 

  14. Gharbi N, Pressac M (2005) Nano Lett 5:2578–2585

    Article  CAS  PubMed  Google Scholar 

  15. Poland CA, Duffin R (2008) Nat Nanotechnol 3:423–428

    Article  CAS  PubMed  Google Scholar 

  16. Luo J, Han H, Wang X, Qiu X et al (2023) Appl Catal B: Environ 328:122495

    Article  CAS  Google Scholar 

  17. Zheng Y, Liu Y, Guo X, Chen Z, Zhang et. al. (2019) J Mater Sci Technol 41:117–126

  18. Lu C, Xu C, Sun W, Ren R, Qiao J, Wang Z, Sun K (2023) J Power Sources 574:233134

    Article  CAS  Google Scholar 

  19. Dou Y, Wang A, Zhao L, Yang X et al (2023) J Colloid Interface Sci 650:943–950

    Article  CAS  PubMed  Google Scholar 

  20. Wang A, Dou Y, Yang X, Wang Q, Sudi MS et al (2023) Dalton Trans 52:11234–11242

    Article  CAS  PubMed  Google Scholar 

  21. Zhang L, Qin D, Feng J, Tanga T, Cheng H (2023) Anal Methods 15:3073–3083

    Article  CAS  PubMed  Google Scholar 

  22. Tang T, Zhou M, Lv J, Cheng H et al (2022) Colloids Surfaces B 216:112538

    Article  CAS  Google Scholar 

  23. Zhao J, Zhou M, Chen J, Wang L, Zhang Q, Zhong S, Xie H, Li Y (2023) Small 1:2303353

    Article  Google Scholar 

  24. Han S, Chen C, Chen C, Wu L, Wu X et al (2023) Analytica Chimica Acta 1254:341116

    Article  CAS  PubMed  Google Scholar 

  25. Guest MF, Bush IJ (2005) Mol Phys 103:719–747

    Article  CAS  Google Scholar 

  26. Ozolins V, Körling M (1993) Phys Rev B 48:18304–18307

    Article  CAS  Google Scholar 

  27. Csonka GI, Perdew JP, Ruzsinszky A (2009) Phys Rev B 79:155107

    Article  Google Scholar 

  28. Perdew JP, Chevary JA (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  29. Söderlind P, Gonis A (2010) Phys Rev B 82:033102

    Article  Google Scholar 

  30. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  31. Wang Y, Jin X, Truhlar DG (2018) Proc Natl Acad Sci 115:10257–10262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Narbe M, Martin HG (2017) Mol Phys 115:2315–2372

    Article  Google Scholar 

  33. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    Article  CAS  PubMed  Google Scholar 

  34. Lin Y, Li G, Mao S, Chai J (2013) J Chem Theory Comput 9:263–272

    Article  CAS  PubMed  Google Scholar 

  35. Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799–805

    Article  Google Scholar 

  36. Hajime H, Minoru S, Yoshio I (1987) J Chem Phys 87:1107–1115

    Article  Google Scholar 

  37. Chen P, Yang J, Rao Z, Wang Q, Tang H (2023) J Colloid Interface Sci 652:866–877

    Article  CAS  PubMed  Google Scholar 

  38. Mao S, Song J, Zhu W, Li H, Pang J, Bai Y (2023) Fuel 352:128982

    Article  CAS  Google Scholar 

  39. Zheng Y, Liu Y, Guo X, Chen Z (2020) J Mater Sci Techno 41:117–126

    Article  CAS  Google Scholar 

  40. Liang Y, Li J, Xue Y, Tan T, Jiang Z (2021) J Hazard Mater 420:126584

    Article  CAS  PubMed  Google Scholar 

  41. Sun Z, Russell CK, Dai J (2023) Progress Energy Combustion Sci 96:101045

    Article  Google Scholar 

  42. Zhang S, Wang J, Liu H, Tong J, Sun Z (2021) Neural Comput Appl 33:821–835

    Article  Google Scholar 

  43. Ma W (2022) Research posters. Columbus, Ohio, USA, vol V009T12. ASME, p A020.

    Google Scholar 

  44. Zhou H, Zhang H, Yang C, Sun Y (2020) IFAC-PapersOnLine 53:10737–10742

    Article  Google Scholar 

  45. Zhou H, Zhang H (2019) IEEE Trans Industrial Electron 67:2469–2479

    Article  Google Scholar 

  46. Zhou H, Yang C, Sun Y (2021) Engineering 7:1274–1281

    Article  Google Scholar 

  47. Zhou H, Yang C, Liu W, Zhuang T (2017) IFAC-PapersOnLine 50:14988–14991

    Article  Google Scholar 

  48. Liu C, Li H, Xu J, Gao W (2023) Int J Environ Res Public Health 20:2513

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shen X, Najmabadi M (2021) Workshop Nat Lang Proces Convers 1:120–129

    Google Scholar 

  50. Wang K, Zhao W, Yuan Y, Jianyao Y (2022) Emerg Manag Sci Technol 2:1

    Google Scholar 

  51. João Gama JOP, Ferreira D, Santos A (2021) Oncol Res 1:023450

    Google Scholar 

Download references

Acknowledgements

Authors thank our University for computational support.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Niu Wenbo: Conceptualization, Methodology, Software, Formal analysis, Investigation Resources, Validation, Formal analysis, Investigation Resources, Chen Yang: Writing - Review & Editing, Visualization. Data Curation, Validation, Formal analysis, Investigation Resources, Validation, Validation, Formal analysis.

Corresponding author

Correspondence to Chen Yang.

Ethics declarations

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenbo, N., Yang, C. Investigation of Potential of Mn-Doped C60, Si60 and Al30P30 Nanocages to Oxidize the Formaldehyde to CO2. Silicon 16, 801–809 (2024). https://doi.org/10.1007/s12633-023-02718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02718-7

Keywords

Navigation