Skip to main content
Log in

Silicon Carbide and Its Germanium Dopant Nanocluster Derivatives as Sensors for Chloropicrin: Perception from Density Functional Theory and Monte-Carlo MD Simulation

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Pivotal to this research is the computational investigation of the nanosensing resourcefulness of silicon carbide, Si12C12 nanocage for the adsorption and detection of chloropicrin (CP). To fill this research gap, pristine Si12C12 was functionalized with Ge and the interaction configuration was modified into four adsorbent-adsorbate systems: using CP and the pristine Si12C12 at the Si and C sites respectively with GeSi12C11 and GeSi11C12 serving as complementary adsorbents for the third and fourth interactions. The electronic properties, thermodynamics, density-of-state and topology were investigated in addition to the adsorption energies all at the ωB97XD/aug-cc-pVDZ levels of theory. Also, the Cohesive Energy Density (CED), and MD simulation were carried out to investigate the stability of the nanocages and their respective interactions. The energy gap (Egp) varied from 5.127 to 6.220 eV with CP@C_Si12C12 and CP@GeSi12C11 at the lower and upper extremes while the ∆H, ∆G and S, which were all spontaneous and favourable had value ranges of −66.322 to −74.932 eV, −66.797 to −75.424 eV and 175.202 to 188.331 Cal/molK−1 respectively. The magnitude of the adsorption energy for the interactions showed strong chemisorption with the two lowest values of −67.025 and −67.231 eV corresponding to CP@Si_Si12C12 and CP@C_Si12C12 respectively. Furthermore, the non-covalent interaction (NCI) investigation complemented by the quantum theory of atoms in molecules (QTAIM) analysis showed that van der Waals forces were formed at CP-sensor interphase of CP@C_Si12C12 while varying degrees of steric hindrances were equally observed in addition to the van der Waals forces in the other three. From the sensor mechanism investigation, the most feasible recovery time of 5.98 × 1029s and 4.38 × 1029s was predicted for CP@C_Si12C12 and CP@Si_Si12C12 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All data are contained within the manuscript and electronic supporting information (ESI).

References

  1. Chang H (2022) Chlorine. In: Between nature and society: biographies of materials, pp 147–158

  2. Chen X, Sun C, Liu Y, Yu L, Zhang K, Asiri AM ... Wang S (2020) All-inorganic perovskite quantum dots CsPbX3 (Br/I) for highly sensitive and selective detection of explosive picric acid. Chem Eng J 379:122360

  3. Pesonen M, Vähäkangas K (2020) Chloropicrin-induced toxicity in the respiratory system. Toxicol Lett 323:10–18

    Article  CAS  PubMed  Google Scholar 

  4. Pesonen M, Pasanen M, Loikkanen J, Naukkarinen A, Hemmilä M, Seulanto H ... Vähäkangas K (2012) Chloropicrin induces endoplasmic reticulum stress in human retinal pigment epithelial cells. Toxicol Lett 211(3):239–245

  5. Ebenezar OO, Roney A, Goswami DG, Petrash JM, Sledge D, Komáromy AM ... Tewari-Singh N (2023) Ocular injury progression and cornea histopathology from chloropicrin vapor exposure: relevant clinical biomarkers in mice. Exp Eye Res 230:109440

  6. Gaskin S, Heath L, Pisaniello D, Edwards JW, Logan M, Baxter C (2017) Dermal absorption of fumigant gases during HAZMAT incident exposure scenarios—methyl bromide, sulfuryl fluoride, and chloropicrin. Toxicol Ind Health 33(7):547–554

    Article  CAS  PubMed  Google Scholar 

  7. Oishi AA, Dhali P, Das A, Mondal S, Rad AS, Hasan MM (2022) Study of the adsorption of chloropicrin on pure and Ga and Al doped B12N12: a comprehensive DFT and QTAIM investigation. Mol Simul 48(9):776–788

    Article  CAS  Google Scholar 

  8. Nagarajan V, Chandiramouli R (2020) Adamsite and chloropicrin molecular adsorption studies on novel green phosphorene nanotube–first-principles investigation. Chem Phys 535:110782

    Article  CAS  Google Scholar 

  9. Nagami H, Suenaga T (2022) Health effects caused by soil fumigant chloropicrin, reduction of exposure to chloropicrin, and alternative technology of soil fumigants. J UOEH 44(4):395–404

    Article  CAS  PubMed  Google Scholar 

  10. Fang W, Yan D, Wang X, Huang B, Song Z, Liu J ... Cao A (2018) Evidences of N2O emissions in chloropicrin-fumigated soil. J Agric Food Chem 66(44):11580–11591

  11. Mattner SW, Horstra CB, Milinkovic M, Merriman PR, Greenhalgh FC (2017) Evaluation of soil-less systems for strawberry transplant production in Australia. Acta Hort 1176:53–63

    Article  Google Scholar 

  12. Al-Mughrabi KI, Vikram A, Poirier R, Jayasuriya K, Moreau G (2016) Management of common scab of potato in the field using biopesticides, fungicides, soil additives, or soil fumigants. Biocontrol Sci Technol 26(1):125–135

    Article  Google Scholar 

  13. Yu J, Land CJ, Vallad GE, Boyd NS (2019) Tomato tolerance and pest control following fumigation with different ratios of dimethyl disulfide and chloropicrin. Pest Manag Sci 75(5):1416–1424

    Article  CAS  PubMed  Google Scholar 

  14. Bhadra S, Bebarta VS, Hendry-Hofer TB, Lippner DS, Winborn JN, Rockwood GA, Logue BA (2021) Analysis of the soil fumigant, dimethyl disulfide, in swine blood by dynamic headspace gas chromatography–mass spectroscopy. J Chromatogr A 1638:461856

    Article  CAS  PubMed  Google Scholar 

  15. Khanyile N (2022) Advances in nanostructured polyamide-based chemical sensors. J Nanomater 2022:1–11

    Article  Google Scholar 

  16. Note: This data is mandatory. Please provide.

  17. Tang P, Leung HT, Gomez MT, Sun G (2018) Sensitivity-tunable colorimetric detection of chloropicrin vapor on nylon-6 nanofibrous membrane based on a detoxification reaction with biological thiols. ACS Sensors 3(4):858–866

    Article  CAS  PubMed  Google Scholar 

  18. Hosseinian A, Vessally E, Babazadeh M, Edjlali L, Es’haghi M (2018) Adsorption properties of chloropicrin on pristine and borazine-doped nanographenes: a theoretical study. J Phys Chem Solids 115:277–282

    Article  CAS  Google Scholar 

  19. Vessally E, Moladoust R, Mousavi-Khoshdel SM, Esrafili MD, Hosseinian A, Edjlali L (2018) Chloropicrin sensor based on the pristine BN nanocones: DFT studies. Struct Chem 29:585–592

    Article  CAS  Google Scholar 

  20. Sohail U, Ullah F, Mahmood T, Ayub K (2022) Olympicene as a high-performance sensor for lung irritants: a dispersion corrected DFT insight. Mater Sci Semicond Process 144:106620

    Article  CAS  Google Scholar 

  21. Kadhim MM, Abed ZT, Rayid R, Abdullaha SA, Majdi A, Rheima AM, Hachim SK (2023) The Cd-decorated AlN nanotube as a potential chemical sensor for chloropicrin: DFT studies. Comput Theor Chem 1220:113982

    Article  CAS  Google Scholar 

  22. Banibairami T, Jamehbozorgi S, Ghiasi R, Rezvani M (2020) Sensing behavior of hexagonal-aluminum nitride to phosgene molecule based on Van der Waals–density functional theory and molecular dynamic simulation. Russ J Phys Chem A 94:581–589

    Article  CAS  Google Scholar 

  23. Ganji MD, Rezvani M (2013) Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation. J Mol Model 19:1259–1265

    Article  CAS  PubMed  Google Scholar 

  24. Ganji MD, Seyed-Aghaei N, Taghavi MM, Rezvani M, Kazempour F (2011) Ammonia adsorption on SiC nanotubes: a density functional theory investigation. Fullerenes Nanotubes Carbon Nanostruct 19(4):289–299

    Article  CAS  Google Scholar 

  25. Goudarziafshar H, Abdolmaleki M, Moosavi-zare AR, Soleymanabadi H (2018) Hydrogen storage by Ni-doped silicon carbide nanocage: a theoretical study. Physica E 101:78–84

    Article  CAS  Google Scholar 

  26. Kosar N, Munsif S, Ayub K, Mahmood T (2021) Storage and permeation of hydrogen molecule, atom and ions (H+ and H−) through silicon carbide nanotube; a DFT approach. Int J Hydrogen Energy 46(13):9163–9173

    Article  CAS  Google Scholar 

  27. Soliman KA, Aal SA (2022) The efficiency of n-and p-type doping silicon carbide nanocage toward (NO2, SO2, and NH3) gases. Chem Pap 76(8):4835–4853

    Article  CAS  Google Scholar 

  28. Saadh MJ, Harismah K, Ruiz-Balvin MC, Da M, Arias-Gonzales JL, Cotrina-Aliaga JC ... Akhavan-Sigari R (2023) Computational assessments of sensing functions of an oxygen-decorated silicon carbide nanocage for the adsorption of mesalazine drug. Comput Theor Chem 114125

  29. Mirzaei M (2023) Insights into the delivery of hydrea anticancer drug by the assistance of an oxidized silicon carbide nanocage

  30. Dennington R, Keith TA, Millam JM (2016) GaussView 6.0. 16. Semichem Inc.: Shawnee Mission

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR ... Fox DJ (2016) Gaussian 16 Software. Gaussian Inc., Wallingford CT

  32. Frisch A (2009) gaussian 09W Reference. Wallingford, USA, 25p, 470

  33. Zhurko G, Zhurko D (2012) Chemcraft Program Revision 1.6. http://www.chemcraft.com/

  34. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  35. Accelrys Inc (2020) Materials Studio (Version 6.1.0)-(Forcite). Accelrys Software Inc. San Diego. http://accelrys.com/products/materials-studio/

  36. Noureddine O, Gatfaoui S, Brandan SA, Sagaama A, Marouani H, Issaoui N (2020) Experimental and DFT studies on the molecular structure, spectroscopic properties, and molecular docking of 4-phenylpiperazine-1-ium dihydrogen phosphate. J Mol Struct 1207:127762

    Article  Google Scholar 

  37. Abdullah HY (2021) Adsorption of alkali and alkaline earth ions on nanocages using density functional theory. Comput Theor Chem 1204

  38. Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE ... Winterbourn C (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23(7):499–515

  39. Louis H, Mathias GE, Ikenyirimba OJ, Unimuke TO, Etiese D, Adeyinka AS (2022) Metal-doped Al12N12X (X= Na, Mg, K) nanoclusters as nanosensors for carboplatin: insight from first-principles computation. J Phys Chem B 126(27):5066–5080

    Article  CAS  PubMed  Google Scholar 

  40. Solimannejad M, Anjiraki AK, Kamalinahad S (2017) Sensing performance of Cu-decorated Si12C12 nanocage towards toxic cyanogen gas: a DFT study. Mater Res Express 4(4):045011

    Article  Google Scholar 

  41. Ullah F, Kosar N, Arshad MN, Gilani MA, Ayub K, Mahmood T (2020) Design of novel superalkali doped silicon carbide nanocages with giant nonlinear optical response. Opt Laser Technol 122:105855

    Article  CAS  Google Scholar 

  42. Seeman JI (2022) Kenichi Fukui, Frontier Molecular Orbital Theory, and the Woodward-Hoffmann Rules. Part. III Fukui’s Science and Technology, 1918–1965. Chem Record 22(4):e202100302

    Article  CAS  Google Scholar 

  43. Unimuke TO, Louis H, Emori W, Idante PS, Agwamba EC, Nwobodo IC ... Anyama CA (2022) Spectroscopic and molecular electronic property investigation of 2-phenylpyrimidine-4, 6-diamine via 1H NMR, UV–vis, FT-Raman, FT-IR, and DFT approach. J Mol Struct 1263:133195

  44. Agwamba EC, Benjamin I, Louis H, Udoikono AD, Igbalagh AT, Egemonye TC, Adeyinka AS (2022) Antitubercolusic potential of amino-(formylphenyl) diazenyl-hydroxyl and nitro-substituted naphthalene-sulfonic acid derivatives: experimental and theoretical investigations. Chem Afr 5(5):1451–1467

    Article  CAS  Google Scholar 

  45. Williams MO, Kevrekidis IG, Rowley CW (2015) A data–driven approximation of the koopman operator: extending dynamic mode decomposition. J Nonlinear Sci 25:1307–1346

    Article  Google Scholar 

  46. Dabo I, Ferretti A, Poilvert N, Li Y, Marzari N, Cococcioni M (2010) Koopmans’ condition for density-functional theory. Phys Rev B 82(11):115121

    Article  Google Scholar 

  47. Agwamba EC, Udoikono AD, Louis H, Udoh EU, Benjamin I, Igbalagh AT... Ushaka UB (2022) Synthesis, characterization, DFT studies, and molecular modeling of azo dye derivatives as potential candidate for trypanosomiasis treatment. Chem Phys Impact 4:100076

  48. Itskowitz P, Berkowitz ML (1997) Chemical potential equalization principle: direct approach from density functional theory. J Phys Chem A 101(31):5687–5691

    Article  CAS  Google Scholar 

  49. Owen AE, Louis H, Agwamba EC, Udoikono AD, Manicum ALE (2023) Antihypotensive potency of p-synephrine: spectral analysis, molecular properties and molecular docking investigation. J Mol Struct 1273:134233

    Article  CAS  Google Scholar 

  50. Fung V, Hu G, Ganesh P, Sumpter BG (2021) Machine learned features from density of states for accurate adsorption energy prediction. Nat Commun 12(1):88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Charlie DE, Louis H, Ogunwale GJ, Amodu IO, Ashishie PB, Agwamba EC, Adeyinka AS (2023) Effects of alkali-metals (X= Li, Na, K) doping on the electronic, optoelectronic, thermodynamic, and X-ray spectroscopic properties of X-SnI3 halide perovskites. Comput Condens Matter 35:e00798

    Article  Google Scholar 

  52. Fung V, Ganesh P, Sumpter BG (2022) Physically informed machine learning prediction of electronic density of states. Chem Mater 34(11):4848–4855

    Article  CAS  Google Scholar 

  53. Murray JS, Politzer P (2011) The electrostatic potential: an overview. Wiley Interdiscip Rev: Comput Mol Sci 1(2):153–163

    CAS  Google Scholar 

  54. Bayoumy AM, Ibrahim M, Omar A (2020) Mapping molecular electrostatic potential (MESP) for fulleropyrrolidine and its derivatives. Opt Quant Electron 52:1–13

    Article  Google Scholar 

  55. Udoikono AD, Agwamba EC, Louis H, Benjamin I, Ahmad I, Ejiofor EU ... Edim M (2022) Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation. J Biomol Struct Dyn 1–25

  56. Lazić P, Alaei M, Atodiresei N, Caciuc V, Brako R, Blügel S (2010) Density functional theory with nonlocal correlation: a key to the solution of the CO adsorption puzzle. Phys Rev B 81(4):045401

    Article  Google Scholar 

  57. Barmparis GD, Remediakis IN (2012) Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: a density functional theory. Phys Rev B 86(8):085457

    Article  Google Scholar 

  58. Calvi A, Ferrari A, Sbuelz L, Goldoni A, Modesti S (2016) Recognizing physisorption and chemisorption in carbon nanotubes CP-sensors by double exponential fitting of the response. Sensors 16(5):731

    Article  PubMed  PubMed Central  Google Scholar 

  59. Padvi MN, Moholkar AV, Prasad SR, Prasad NR (2021) A critical review on design and development of gas sensing materials. Eng Sci 15:20–37

    CAS  Google Scholar 

  60. Karjabad KD, Mohajeri S, Shamel A, Khodadadi-Moghaddam M, Rajaei GE (2020) Boron nitride nanoclusters as a sensor for Cyclosarin nerve agent: DFT and thermodynamics studies. SN Appl Sci 2:1–8

    Article  Google Scholar 

  61. Dindorkar SS, Yadav A (2022) Monolayered silicon carbide for sensing toxic gases: a comprehensive study based on the first-principle density functional theory. Silicon 1–9

  62. Agwamba EC, Louis H, Isang BB, Ogunwale GJ, Ikenyirimba OJ, Adeyinka AS (2023) Pristine fullerene (C24) metals (Mo, Fe, Au) engineered nanostructured materials as an efficient electro-catalyst for hydrogen evolution reaction (HER): A density functional theory (DFT) study. Mater Chem Phys 127374

  63. Edet HO, Louis H, Godwin UC, Adalikwu SA, Agwamba EC, Adeyinka AS (2023) Single-metal (Cu, Ag, Au) encapsulated gallium nitride nanotube (GaNNT) as glucose nonenzymatic nanosensors for monitoring diabetes: perspective from DFT, visual study, and MD simulation. J Mol Liquids 122209

  64. Khan MT, Ali S, Zeb MT, Kaushik AC, Malik SI, Wei DQ (2020) Gibbs free energy calculation of mutation in PncA and RpsA associated with pyrazinamide resistance. Front Mol Biosci 7:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ribeiro M, Henriques T, Castro L, Souto A, Antunes L, Costa-Santos C, Teixeira A (2021) The entropy universe. Entropy 23(2):222

    Article  PubMed  PubMed Central  Google Scholar 

  66. Agwamba EC, Mathias GE, Louis H, Ikenyirimba OJ, Unimuke TO, Ahuekwe EF ... Adeyinka AS (2023) Single metal-doped silicon (Si59X; X= Nb, Mo, Y, Zr) nanostructured as nanosensors for N-Nitrosodimethylamine (NDMA) pollutant: Intuition from computational study. Mater Today Commun 106173

  67. Cretu V, Postica V, Mishra AK, Hoppe M, Tiginyanu I, Mishra YK ... Lupan O (2016) Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. J Mater Chem A 4(17):6527–6539

  68. Agwamba EC, Udoikono AD, Louis H, Mathias GE, Benjamin I, Ikenyirimba OJ ... Manicum ALE (2023) Adsorption mechanism of AsH3 pollutant on metal-functionalized coronene C24H12-X (X= Mg, Al, K) quantum dots. Chem Phys Impact 6:100224

  69. Raju RK, Bloom JW, An Y, Wheeler SE (2011) Substituent effects on non-covalent interactions with aromatic rings: insights from computational chemistry. ChemPhysChem 12(17):3116–3130

    Article  CAS  PubMed  Google Scholar 

  70. Louis H, Usun BJ, Agwamba EC, Amodu IO, Eno EA, Adeyinka AS (2023) Fe and Au-codoping of molybdenum carbide (MoC) nanosheet for hydrogen adsorption. Mater Sci Semicond Process 159:107402

    Article  CAS  Google Scholar 

  71. Shahbazian S (2018) Why bond critical points are not “bond” critical points. Chemistry- Eur J 24(21):5401–5405

    Article  CAS  Google Scholar 

  72. Bankiewicz B, Matczak P, Palusiak M (2012) Electron density characteristics in bond critical point (QTAIM) versus interaction energy components (SAPT): the case of charge-assisted hydrogen bonding. J Phys Chem A 116(1):452–459

    Article  CAS  PubMed  Google Scholar 

  73. Mohammadi MD, Abbas F, Louis H, Mathias GE, Unimuke TO (2022) Trapping of CO, CO2, H2S, NH3, NO, NO2, and SO2 by polyoxometalate compound. Comput Theor Chem 1215:113826

    Article  CAS  Google Scholar 

  74. Chukwuemeka K, Louis H, Benjamin I, Nyong PA, Ejiofor EU, Eno EA, Manicum ALE (2023) Therapeutic potential of B12N12-X (X= Au, Os, and Pt) nanostructured as effective fluorouracil (5Fu) drug delivery materials. ACS Appl Bio Mater 6(3):1146–1160

    Article  CAS  PubMed  Google Scholar 

  75. Yang H, Boulet P, Record MC (2020) A rapid method for analyzing the chemical bond from energy densities calculations at the bond critical point. Comput Theor Chem 1178:112784

    Article  CAS  Google Scholar 

  76. Mollania F, Hadipour NL, Mollania N (2020) CNT-based nanocarrier loaded with pyrimethamine for adipose mesenchymal stem cells differentiation and cancer treatment: the computational and experimental methods. J Biotechnol 308:40–55

    Article  CAS  PubMed  Google Scholar 

  77. Benjamin I, Louis H, Okon GA, Qader SW, Afahanam LE, Fidelis CF ... Manicum ALE (2023) Transition metal-decorated B12N12–X (X= Au, Cu, Ni, Os, Pt, and Zn) nanoclusters as biosensors for carboplatin. ACS Omega 8(11):10006–10021

  78. Wang M, Tang C (2022) Silicon doped boron carbide (BC3) nanosheet as a promising sensitive material for detection of acetaminophen drug based on the DFT approach. SILICON 14(10):5463–5470

    Article  CAS  Google Scholar 

  79. Ajeel FN, Khudhair AM, Mohammed MH, Mahdi KM (2019) DFT investigation of graphene nanoribbon as a potential nanobiosensor for tyrosine amino acid. Russ J Phys Chem A 93:778–785

    Article  CAS  Google Scholar 

  80. Bokka N, Adepu V, Tiwari A, Kanungo S, Sahatiya P (2022) A detailed comparative performance analysis of the Transition Metal Di-chalcogenides (TMDs) based strain sensors through experimental realisations and first principle calculations. FlatChem 32:100344

    Article  CAS  Google Scholar 

  81. Doubi Y, Hartiti B, Siadat M, Ziti A, Stitou M, Nkuissi HJT, Losson E (2022) Theoretical validation of the properties of SnO2 nanostructure grown by Robust Spray pyrolysis technique for formaldehyde CP-sensor. Mater Today: Proc

  82. Louis H, Charlie DE, Amodu IO, Benjamin I, Gber TE, Agwamba EC, Adeyinka AS (2022) Probing the reactions of Thiourea (CH4N2S) with metals (X= Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X). ACS Omega

  83. Dushman S (1930) Thermionic emission. Rev Mod Phys 2(4):381

    Article  CAS  Google Scholar 

  84. Ogunwale GJ, Louis H, Gber TE, Adeyinka AS (2022) Modeling of pristine, Ir-and Au-decorated C60 fullerenes as sensors for detection of Hydroxyurea and Nitrosourea drugs. J Environ Chem Eng 10(6):108802

    Article  CAS  Google Scholar 

  85. Rad AS, Abedini E (2016) Chemisorption of NO on Pt-decorated graphene as modified nanostructure media: a first principles study. Appl Surf Sci 360:1041–1046

    Article  CAS  Google Scholar 

  86. Agwamba EC, Louis H, Olagoke PO, Gber TE, Okon GA, Fidelis CF, Adeyinka AS (2023) Modeling of magnesium-decorated graphene quantum dot nanostructure for trapping AsH 3, PH 3 and NH 3 gases. RSC Adv 13(20):13624–13641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nwobodo IC, Louis H, Unimuke TO, Ikenyirimba OJ, Iloanya AC, Mathias GE ... Adeyinka AS (2023) Molecular simulation of the interaction of diclofenac with halogen (F, Cl, Br)-encapsulated Ga12As12 nanoclusters. ACS Omega

Download references

Acknowledgements

The authors would like to acknowledge the Centre for high performance computing (CHPC) South Africa for providing computational resources for this research project.

Author information

Authors and Affiliations

Authors

Contributions

H.L: Project conceptualization, design, and supervision. E.A.: Writing, results extraction, analysis, and manuscript first draft. K.C.: Manuscript first draft, analysis, and investigation. D.E. and G.O.: Visualization, analysis, writing, A.M.: Resources and software

Corresponding authors

Correspondence to Ernest C. Agwamba or Hitler Louis.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 429 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agwamba, E.C., Chukwuemeka, K., Louis, H. et al. Silicon Carbide and Its Germanium Dopant Nanocluster Derivatives as Sensors for Chloropicrin: Perception from Density Functional Theory and Monte-Carlo MD Simulation. Silicon 16, 625–646 (2024). https://doi.org/10.1007/s12633-023-02712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02712-z

Keywords

Navigation