Skip to main content
Log in

Storage Pest Management with Nanopesticides Incorporating Silicon Nanoparticles: a Novel Approach for Sustainable Crop Preservation and Food Security

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Modernizing crop farming is necessary to attain sustainable food security due to the growing global population. The frequent insect infestation has a negative impact on agricultural production and results in large economic losses. The worldwide food market faces significant difficulty in protecting stored goods from insect infestations. It is estimated that one-quarter to one-third of the world’s grain crop is lost each year due to storage. Due to post-harvest insect damage, India suffers an annual storage loss of 14 million tonnes worth approximately 7000 crores. Chemical pesticides are frequently used in conventional techniques of pest control, which not only present environmental risks but also encourage the emergence of pests that are resistant to them. Silicon nanoparticles (SiNPs) have the potential to be used in storage pest control as a creative and environmentally friendly alternative as they leave no residues in storage goods or the environment, addressing corners associated with chemical pesticides, mitigating the development of pest resistance, having targeted mode of action and less harm to non-target organism. SiNPs are interesting options for eco-friendly pest management methods due to their distinctive physicochemical characteristics. The insecticidal characteristics of SiNPs against common storage pests were examined in this review paper, along with their advantages over traditional insecticides, mechanism of action, environmental impact, and safety considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the review.

Code Availability

Not applicable.

References

  1. Bhoi TK, Samal I, Mahanta DK, Komal J, Jinger D, Sahoo MR et al (2023)Understanding how silicon fertilization impacts chemical ecology and multitrophic interactions among plants, insects and beneficial arthropods. Silicon 15(6):2529-49. https://doi.org/10.1007/s12633-022-02220-6

  2. Duro JA, Lauk C, Kastner T, Erb KH, Haberl H (2020) Global inequalities in food consumption, cropland demand and land-use efficiency: a decomposition analysis. Glob Environ Change 64:102124. https://doi.org/10.1016/j.gloenvcha.2020.102124

  3. Oso AA, Ashafa AO (2021) Nutritional composition of grain and seed proteins. IntechOpen, London, UK. https://doi.org/10.5772/intechopen.97878

  4. Jerzak MA, Śmiglak-Krajewska M (2020) Globalization of the market for vegetable protein feed and its impact on sustainable agricultural development and food security in EU countries illustrated by the example of Poland. Sustainability 12(3):888. https://doi.org/10.3390/su12030888

    Article  CAS  Google Scholar 

  5. Bezabih G, Satheesh N, Workneh Fanta S, Wale M, Atlabachew M (2022) Reducing postharvest loss of stored grains using plant-based biopesticides: a review of past research efforts. Adv Agric 2022:1–16. https://doi.org/10.1155/2022/6946916

  6. Wang Y, Yuan Z, Tang Y (2021) Enhancing food security and environmental sustainability: A critical review of food loss and waste management. Resour Environ Sustain 100023:1–13. https://doi.org/10.1016/j.resenv.2021.100023

  7. Olorunfemi BJ, Kayode SE (2021) Post-harvest loss and grain storage technology-a review. Turkish JAF Sci Tech 9(1):75–83. https://doi.org/10.24925/turjaf.v9i1.75-83.3714

    Article  Google Scholar 

  8. Luo Y, Huang D, Li D, Wu L (2020) On farm storage, storage losses and the effects of loss reduction in China. Resour Conserv Recy 162:105062. https://doi.org/10.1016/j.resconrec.2020.105062

    Article  Google Scholar 

  9. Ahmad R, Hassan S, Ahmad S, Nighat S, Devi YK, Javeed K et al (2021) Stored grain pests and current advances for their management. Postharvest Technol-Recent Advances, New Perspectives and Applications. IntechOpen. https://doi.org/10.5772/intechopen.101503

  10. Mesterházy Á, Oláh J, Popp J (2020) Losses in the grain supply chain: causes and solutions. Sustainability 12(6):2342. https://doi.org/10.3390/su12062342

    Article  Google Scholar 

  11. Kumar D, Kalita P (2017) Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods 6(1):8. https://doi.org/10.3390/foods6010008

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deshwal R, Vaibhav V, Kumar N, Kumar A, Singh R (2020) Stored grain insect pests and their management: an overview. J Entomol Zool Stud 8(5):969–974

    Google Scholar 

  13. Rajendran S, Sriranjini V (2008) Plant products as fumigants for StoredProduct insect control. J Stored Prod Res 44(2):126–135. https://doi.org/10.1016/j.jspr.2007.08.003

    Article  CAS  Google Scholar 

  14. Banga KS, Kumar S, Kotwaliwale N, Mohapatra D (2020) Major insects of stored food grains. Int J Chem Stud 8(1):2380–2384. https://doi.org/10.22271/chemi.2020.v8.i1aj.8624

    Article  Google Scholar 

  15. Van Winkle T, Ponce M, Quellhorst H, Bruce A, Albin CE, Kim Tn et al (2022) Microbial volatile organic compounds from tempered and incubated grain mediate attraction by a primary but not secondary stored product insect pest in wheat. J Chem Ecol 48:27–40. https://doi.org/10.1007/s10886-021-01312-8

  16. Guru PN, Mridula D, Dukare AS, Ghodki BM, Paschapur AU, Samal I et al (2022) A comprehensive review on advances in storage pest management: current scenario and future prospects. Front Sustain Food Syst 6:993341. https://doi.org/10.3389/fsufs.2022.993341

    Article  Google Scholar 

  17. Nayak MK, Daglish GJ, Phillips TW, Ebert PR (2020) Resistance to the fumigant phosphine and its management in insect pests of stored products: a global perspective. Annu Rev Entomol 65:333–350. https://doi.org/10.1146/annurev-ento-011019-025047

    Article  CAS  PubMed  Google Scholar 

  18. Yadav D, Bhattacharyya R, Banerjee D (2021) Acute aluminum phosphide poisoning: the menace of phosphine exposure. Clin Chim Acta 520:34–42. https://doi.org/10.1016/j.cca.2021.05.026

    Article  CAS  PubMed  Google Scholar 

  19. Poudel S, Poudel B, Acharya B, Poudel P (2020) Pesticide use and its impacts on human health and environment. Environ Ecosyst Sci 4(1):47–51. https://doi.org/10.26480/ees.01.2020.47.51

    Article  Google Scholar 

  20. Shin HY, An JS, Lee JM, You SG, Shin IS (2021) Phosphine residues and physicochemical stability of Hwangtae after fumigation. Food Sci Biotechnol 30(8):1025–1031. https://doi.org/10.1007/s10068-021-00944-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chidemo SC, Musundire R, Mashavakure N (2023) Higher dosage of phosphine is required to control resistant strains of pests in outdoor grain storage systems: evidence from Zimbabwe. J Stored Prod Res 100:102046. https://doi.org/10.1016/j.jspr.2022.102046

    Article  CAS  Google Scholar 

  22. Attia MA, Wahba TF, Shaarawy N, Moustafa FI, Guedes RNC, Dewer Y (2020) Stored grain Pest Prevalence and Insecticide Resistance in Egyptian Populations of the Red Flour Beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.). J Stored Prod Res 87(3):101611. https://doi.org/10.1016/j.jspr.2020.101611

  23. Sparks TC, Storer N, Porter A, Slater R, Nauen R (2021) Insecticide resistance management and industry: the origins and evolution of the Insecticide Resistance Action Committee (IRAC) and the mode of action classification scheme. Pest Manag Sci 77(6):2609–2619. https://doi.org/10.1002/ps.6254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajendran S (2020) Insect pest management in stored products. Outlooks Pest Manag 31(1):24–35. https://doi.org/10.1564/v31_feb_05

    Article  Google Scholar 

  25. Akhtar I, Iqbal Z, Saddiqe Z (2020) Nanotechnology in pest management. Nanoagronomy:69–83. https://doi.org/10.1007/978-3-030-41275-3_5

  26. Shukla P, Chaurasia P, Younis K, Qadri OS, Faridi SA, Srivastava G (2019) Nanotechnology in sustainable agriculture: studies from seed priming to post-harvest management. Nanotechnol Environ Eng 4(1):11. https://doi.org/10.1007/s41204-019-0058-2

    Article  Google Scholar 

  27. Zannat R, Rahman MM, Afroz M (2021) Application of nanotechnology in insect pest management: a review. SAARC J Agric 19(2):1-. https://doi.org/10.3329/sja.v19i2.57668

  28. Kashyap PL, Kumar S, Jasrotia P, Singh DP, Singh GP (2020) Nanotechnology in wheat production and protection. In: Dasgupta N, Ranjan S, Lichtfouse E (eds) Environmental nanotechnology volume 4. Editors. Springer, Cham, pp 165–94. https://doi.org/10.1007/978-3-030-26668-4_5

  29. Rikta SY, Rajiv P (2021) Applications of silver nanomaterial in agricultural pest control. In: Silver nanomaterials for agric-food applications. Elsevier, pp 453–70. https://doi.org/10.1016/b978-0-12-823528-7.00002-0

  30. Saw G, Nagdev P, Jeer M, Murali-Baskaran RK (2023) Silica nanoparticles mediated insect pest management. Pestic Biochem Physiol 194:105524. https://doi.org/10.1016/j.pestbp.2023.105524

    Article  CAS  PubMed  Google Scholar 

  31. Biradar W, Nadagouda S, Aralimarad P, Hiregoudar S (2021) Entomotoxic effect of green nanoparticle an alternate strategy for stored grain pest management. Int J Trop Insect Sci 41(4):2829–2840. https://doi.org/10.1007/s42690-021-00465-z

    Article  Google Scholar 

  32. Raduw GG, Mohammed AA (2020) Insecticidal efficacy of three nanoparticles for the control of Khapra beetle (Trogoderma granarium) on different grains. J Agric Urban Entomol 36(1):90–100. https://doi.org/10.3954/1523-5475-36.1.90

    Article  Google Scholar 

  33. Hamel D, Rozman V, Liška A (2020) Storage of cereals in warehouses with or without pesticides. Insects 11(12):846. https://doi.org/10.3390/insects11120846

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bartolucci C, Antonacci A, Arduini F, Moscone D, Fraceto L, Campos E et al (2020) Green nanomaterials fostering agrifood sustainability. TrAC Trends Anal Chem 125:115840. https://doi.org/10.1016/j.trac.2020.115840

    Article  CAS  Google Scholar 

  35. Ndolomingo MJ, Bingwa N, Meijboom R (2020) Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. J Mater Sci 15:6195–6241

    Article  Google Scholar 

  36. Koranić Z. Nanoparticles and nanotechnology in control of insects of food and stored products of plant origin. Zb Radova 30 Seminar s Međunarodnim Sudjelovanjem DDD i ZUPP. (2018) Djelatnost dezinfekcije, dezinsekcije, deratizacije i zaštite uskladištenih, poljoprivrednih proizvoda, Novigrad (Istra), Hrvatska;3. do 6. travnja:(179–87). Korunić doo Zagreb

  37. Manivannan N, Aswathy S, Malaikozhundan B, Boopathi T (2021) Nano-zinc oxide synthesized using diazotrophic Azospirillum improves the growth of mung bean Vigna radiata. Int Nano Lett 11:405–415. https://doi.org/10.1007/s40089-021-00351-z

    Article  CAS  Google Scholar 

  38. Malaikozhundan B, Vinodhini J, Kalanjiam MA, Vinotha V, Palanisamy S, Vijayakumar S, Vaseeharan B, Mariyappan A (2020) High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess Biosyst Eng 43:1533–1547. https://doi.org/10.1007/s00449-020-02346-0

    Article  CAS  PubMed  Google Scholar 

  39. Singh R, Sharma I, Sharma P, Gupta M, Singhal P, Goyal Set al (2021) Nanoparticles and nanotechnology: from source, properties, types, synthesis to multifaceted functional potential in agriculture

  40. Kannan M, Bojan N, Swaminathan J, Zicarelli G, Hemalatha D, Zhang Y et al (2023) Nanopesticides in agricultural pest management and their environmental risks: a review. Int J Environ Sci Technol 7:1–26

    Google Scholar 

  41. Hazarika A, Yadav M, Yadav DK, Yadav HS (2022) An overview of the role of nanoparticles in sustainable agriculture. Biocatal Agric Biotechnol 43:102399

    Article  CAS  Google Scholar 

  42. Malaikozhundan B, Vinodhini J (2018) Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle, Callosobruchus maculatus. Mater Today Commun 14:106-15. https://doi.org/10.1016/j.mtcomm.2017.12.015

  43. Kong XP, Zhang BH, Wang J (2021) Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: a review. J Agric Food Chem 69(24):6735–6754. https://doi.org/10.1021/acs.jafc.1c01091

    Article  CAS  PubMed  Google Scholar 

  44. Xin X, Judy JD, Sumerlin BB, He Z (2020) Nano-enabled agriculture: from nanoparticles to smart nano-delivery systems. Environ Chem 17(6):413–425. https://doi.org/10.1071/EN19254

    Article  CAS  Google Scholar 

  45. Malaikozhundan B, Vinodhini J (2018) Biological control of the Pulse beetle, Callosobruchus maculatus in stored grains using the entomopathogenic bacteria, Bacillus thuringiensis. Microb Pathog 14:139-46. https://doi.org/10.1016/j.micpath.2017.11.046

  46. Malaikozhundan B, Vaseeharan B, Vijayakumar S, Thangaraj MP (2017) Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J Photochem Photobiol B 1(174):306–314. https://doi.org/10.1016/j.jphotobiol.2017.08.014

    Article  CAS  Google Scholar 

  47. Wang D, Saleh NB, Byro A, Zepp R, Sahle-Demessie E, Luxton TP et al (2022) Nano-enabled pesticides for sustainable agriculture and global food security. Nat Nanotechnol 17(4):347–360. https://doi.org/10.1038/s41565-022-01082-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mittal D, Kaur G, Singh P, Yadav K, Ali SA (2020) Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front Nanotechnol 2:579954. https://doi.org/10.3389/fnano.2020.579954

    Article  Google Scholar 

  49. An C, Sun C, Li N, Huang B, Jiang J, Shen Y et al (2022) Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture. J Nanobiotechnology 20(1):1–9

    Article  Google Scholar 

  50. Yin J, Su X, Yan S, Shen J (2023) Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials (Basel) 13(7):1255. https://doi.org/10.3390/nano13071255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saritha GN, Anju T, Kumar A (2022) Nanotechnology-Big impact: how nanotechnology is changing the future of agriculture? J Agric Food Res 19:100457

    Google Scholar 

  52. Chaud M, Souto EB, Zielinska A, Severino P, Batain F, Oliveira-Junior J et al (2021) Nanopesticides in agriculture: benefits and challenge in agricultural productivity, toxicological risks to human health and environment. Toxics 9(6):131. https://doi.org/10.3390/toxics9060131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang Y, Zhou P, Zhang P, Adeel M, Shakoor N, Li Y et al (2022) Green synthesis of metal-based nanoparticles for sustainable agriculture. Environ Pollut 309:119755. https://doi.org/10.1016/j.envpol.2022.119755

    Article  CAS  PubMed  Google Scholar 

  54. Singh AP, Balayan S, Gupta S, Jain U, Sarin RK, Chauhan N (2021) Detection of pesticide residues utilizing enzyme-electrode interface via nano-patterning of TiO2 nanoparticles and molybdenum disulfide (MoS2) nanosheets. Process Biochem 108:185–193. https://doi.org/10.1016/j.procbio.2021.06.015

    Article  CAS  Google Scholar 

  55. Shahid M, Naeem-Ullah U, Khan W, Saeed DS, Razzaq K (2021) Application of nanotechnology for insect pests management: a review. J Innov Sci 7:28–39

    CAS  Google Scholar 

  56. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. https://doi.org/10.1021/jf302154y

    Article  CAS  PubMed  Google Scholar 

  57. Magda S, Hussein MM (2016) Determinations of the effect of using silica gel and nanosilica gel against Tuta absoluta (Lepidoptera: Gelechiidae) in tomato fields. J Chem Pharm Res 8(4):506–512

    CAS  Google Scholar 

  58. Ziaee M, Ganji Z (2016) Insecticidal efficacy of silica nanoparticles against Rhyzopertha dominica F. and Tribolium confusum J. du Val. J Plant Prot Res 56(3):250–6. https://doi.org/10.1515/jppr-2016-0037

  59. Rea RS, Islam MR, Rahman MM, Nath B, Mix K (2022) Growth, nutrient accumulation, and drought tolerance in crop plants with silicon application: a review. Sustainability 14(8):4525

    Article  CAS  Google Scholar 

  60. Roychoudhury A (2020) Silicon-nanoparticles in crop improvement and agriculture. Int J Recent Adv Biotechnol Nanotechnol 3(1):2582-1571

  61. Rouhani M, Samih MA, Kalamtari S (2012) Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F. (Col.: Bruchidae). J Entomol Res 4:297–305

    Google Scholar 

  62. Anandhi S, Saminathan VR, Yasotha P, Saravanan PT, Rajanbabu V (2020) Nano-pesticides in pest management. J Entomol Zool Stud 8:685–690

    Google Scholar 

  63. Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal: biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue State Agric Technol Serv Assoc Ann Arbor:1–18

  64. Deka B, Babu A, Baruah C, Barthakur M (2021) Nanopesticides: a systematic review of their prospects with special reference to tea pest management. Front Nutr 8:686131. https://doi.org/10.3389/fnut.2021.686131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293. https://doi.org/10.1007/s00253-012-3969-4

    Article  CAS  PubMed  Google Scholar 

  66. Chen J, Wang W, Xu Y, Zhang X (2011) Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J Agric Food Chem 59(1):307–311. https://doi.org/10.1021/jf103640t

    Article  CAS  PubMed  Google Scholar 

  67. Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY et al (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246. https://doi.org/10.1002/ps.1301

    Article  CAS  PubMed  Google Scholar 

  68. Goswami P, Mathur J, Srivastava N (2022) Silica nanoparticles as novel sustainable approach for plant growth and crop protection. Heliyon 8(7):e09908. https://doi.org/10.1016/j.heliyon.2022.e09908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhardwaj K, Singh S (2022) Biofabricated nanoparticles: their delivery and utility in Plutella xylostella management. Indian J Biochem Biophys (IJBB) 59(4):399–404

    Google Scholar 

  70. Jeer M (2022) Recent developments in silica-nanoparticles mediated insect pest management in agricultural crops. Silicon Nano-Silicon Environ Stress Manag Crop Qual Improv:229–240. https://doi.org/10.1016/B978-0-323-91225-9.00016-9

  71. Khan M, Khan AU, Parveen A (2022) Nanoparticles in plant disease management. Inplant and nanoparticles. Springer Nature Singapore, Singapore, pp 53–65

  72. Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84(1):99–105. https://doi.org/10.1007/s10340-010-0332-3

  73. Shoala T (2023) The dual role of nanotechnology in the management of biotic and abiotic stresses in plants. In: Nanotechnology in agriculture and agroecosystems. Elsevier, pp 51–70

  74. Debnath N, Mitra S, Das S, Goswami A (2012) Synthesis of surface functionalized silica nanoparticles and their use as entomotoxicnanocides. Powder Technol 221:252–256. https://doi.org/10.1016/j.powtec.2012.01.009

    Article  CAS  Google Scholar 

  75. Pathipati UR, Kanuparthi PL (2021) Silver nanoparticles for insect control: bioassays and mechanisms. In: Silver nanomaterials for agric-food applications. Elsevier, pp 471–94

  76. Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91(1):1–15. https://doi.org/10.1007/s10340-017-0898-0

    Article  Google Scholar 

  77. Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M (2014) Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol 98(5):1951–1961. https://doi.org/10.1007/s00253-013-5473-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adel MM, Abd El-Naby SS, Abdel-Rheim K, salem N (2022) Formulation, Characterization and insecticidal Effect of Two Volatile Phytochemicals Solid-lipid nanoparticles against some Stored Product Insects. Egypt J Chem 65(12):59-71. https://doi.org/10.21608/ejchem.2022.121873.5509

  79. Alzogaray RA, Zerba EN (2017) Rhodnius prolixus intoxicated. J Insect Physiol 97:93–113. https://doi.org/10.1016/j.jinsphys.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  80. Zahran NF, Sayed RM (2021) Protective effect of nanosilica on irradiated dates against saw toothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae) adults. J Stored Prod Res 92:101799. https://doi.org/10.1016/j.jspr.2021.101799

    Article  CAS  Google Scholar 

  81. Kar S, Nayak RN, Sahoo NR, Bakhara CK, Panda MK, Pal US et al (2021) Rice weevil management through application of silica Nano particle and physico-chemical and cooking characterization of the treated rice. J Stored Prod Res 94:101892. https://doi.org/10.1016/j.jspr.2021.101892

    Article  CAS  Google Scholar 

  82. Thabet AF, Boraei HA, Galal OA, El-Samahy MFM, Mousa KM, Zhang YZ et al (2021) Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep 11(1):14484. https://doi.org/10.1038/s41598-021-93518-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sayed RM, Abdelfattah NA (2022) Synergistic effect of gamma radiation and nanosilica on the cowpea weevil; Callosobruchus maculatus reproduction and mortality. Journal of Radiation and Nuclear Applications 7(2):39–43. https://doi.org/10.18576/jrna/070205

  84. Zhang J, Kothalawala S, Yu C (2023) Engineered silica nanomaterials in pesticide delivery: challenges and perspectives. Environ Pollut 320:121045. https://doi.org/10.1016/j.envpol.2023.121045

    Article  CAS  PubMed  Google Scholar 

  85. Saha R, Patel VK, Ghosh S, Das A (2023) Nanotechnology and sustainability: toxicological assessments and environmental risks. In: Modern nanotechnology, vol 2: Green Synthesis, Sustainable Energy and Impacts. Springer Nature Switzerland, Cham, pp 3–25

  86. Konappa N, Krishnamurthy S, Arakere UC, Chowdappa S, Akbarbasha R, Ramachandrappa NS (2021) Nanofertilizers and nanopesticides: recent trends, future prospects in agriculture. In: Sudisha J, Singh HB, Fraceto LF,  de Lima R (eds) Woodhead Publishing Series in Food Science, Technology and Nutrition, Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture, Woodhead Publishing, pp 281–330. https://doi.org/10.1016/B978-0-12-820092-6.00012-4

  87. Dhiman S, Yadav A, Debnath N, Das S (2021) Application of core/shell nanoparticles in smart farming: A paradigm shift for making the agriculture sector more sustainable. J Agric Food Chem 69(11):3267–3283. https://doi.org/10.1021/acs.jafc.0c05403

    Article  CAS  PubMed  Google Scholar 

  88. Singh G, Ramadass K, Sooriyakumar P, Hettithanthri O, Vithange M, Bolan N et al (2022) Nanoporous materials for pesticide formulation and delivery in the agricultural sector. J Control Release 343:187–206. https://doi.org/10.1016/j.jconrel.2022.01.036

    Article  CAS  PubMed  Google Scholar 

  89. El-Naggar ME, Abdelsalam NR, Fouda MMG, Mackled MI, Al-Jaddadi MAM, Ali HM et al (2020) Soil application of nano silica on maize yield and its insecticidal activity against some stored insects after the post-harvest. Nanomaterials (Basel) 10(4):739. https://doi.org/10.3390/nano10040739

    Article  CAS  PubMed  Google Scholar 

  90. Robledo-Olivo A, Cabrera-De la Fuente M, Benavides-Mendoza A (2021) Application of nanosilicon and nanochitosan to diminish the use of pesticides and synthetic fertilizers in crop production. In: Handbook of nanomaterials and nanocomposites for energy and environmental applications, pp 2093–119. Springer International Publishing, Cham

  91. Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U et al (2022) Nanomaterials for postharvest management of insect pests: current state and future perspectives. Front Nanotechnol 3:811056. https://doi.org/10.3389/fnano.2021.811056

  92. Kale PR, Pawar VS, Shendge SN (2021) Recent advances in stored grain pest management: a review. The Pharma Innovation Journal SP-10 (8):667–673

  93. Padmasri A, Rameash K, Jayanth BV (2023) Nanoparticles-an alternate strategy for the management of rice weevil (Sitophilus oryzae Linnaeus) in maize seeds. J Exp Zool India 26(2):2255–2260. https://doi.org/10.51470/jez.2023.26.2.2255

  94. Asif M, Islam S, Malik MA, Dar ZM, Masood A, Shafi S et al (2021) Nano pesticides application in agriculture and their impact on environment. Inagricultural development in Asia-potential use of nano-materials and nano-technology IntechOpen. https://doi.org/10.5772/intechopen.100690

  95. Haroun SA, Elnaggar ME, Zein DM, Gad RI (2020) Insecticidal efficiency and safety of zinc oxide and hydrophilic silica nanoparticles against some stored seed insects. J Plant Prot Res 60(1)

  96. Wazid SN, Prabhuraj A, Naik RH, Shakuntala NM, Sharanagouda H (2020) The persistence of residual toxicity of zinc, copper and silica green nanoparticles against important storage pests. J Entomol Zool Stud 8:1207–1211

    Google Scholar 

  97. Priyanka P, Kumar D, Yadav A, Yadav K (2020) Nanobiotechnology and its application in agriculture and food production. Nanotechnology for food. Agric Environ:105–134. https://doi.org/10.1007/978-3-030-31938-0_6

  98. Saranya S, Selvi A, Babujanarthanam R, Rajasekar A, Madhavan J (2020) Insecticidal activity of nanoparticles and mechanism of action. Model organisms to study biological activities and toxicity of nanoparticles, pp 243–266. https://doi.org/10.1007/978-981-15-1702-0_12

  99. Sushila N, Pavitra SA, Ashoka J, Sharanagouda H (2020) Biosynthesis and effect of green silica nanoparticles on tobacco caterpillar, Spodoptera litura on cotton. J Entomol Zool Stud 8:1564–1570

    Google Scholar 

  100. Ashraf SA, Siddiqui AJ, Elkhalifa AEO, Khan MI, Patel M, Alreshidi M et al (2021) Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Sci Total Environ 768:144990. https://doi.org/10.1016/j.scitotenv.2021.144990

    Article  CAS  PubMed  Google Scholar 

  101. Namasivayam SK, Srinivasan S, Samrat K, Priyalakshmi B, Kumar RD, Bharani A et al (2023) Sustainable approach to manage the vulnerable rodents using eco-friendly green rodenticides formulation through nanotechnology principles-A review. Process Saf Environ Prot 171(4). https://doi.org/10.1016/j.psep.2023.01.050

  102. Huang L, Yang S, Chen J, Tian J, Huang Q, Huang H et al (2019) A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through Surface Initiated cationic ring opening polymerization. Mater Sci Eng C Mater Biol Appl 94:270–278. https://doi.org/10.1016/j.msec.2018.09.042

    Article  CAS  PubMed  Google Scholar 

  103. Rahman IA, Padavettan V (2012) Synthesis of silica nanoparticles by SolGel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater 2012:132424. https://doi.org/10.1155/2012/132424

    Article  CAS  Google Scholar 

  104. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M et al (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90. https://doi.org/10.1007/s13205-019-1626-7

  105. Cáceres M, Vassena CV, Garcerá MD, Santo-Orihuela PL (2019) Silica nanoparticles for insect pest control. Curr Pharm Des 25(37):4030–8. https://doi.org/10.2174/1381612825666191015152855

  106. Patil N, Lin A, Myers ER, Ryu K, Badmaev A, Zhou C et al (2009) Waferscale growth and transfer of aligned single-walled carbon nanotubes. IEEE Trans Nanotechnol 8(4):498–504. https://doi.org/10.1109/TNANO.2009.2016562

    Article  Google Scholar 

  107. Babamir-Satehi A, Ziaee M, Ashrafi A (2017) Synthesis and toxicological evaluation of silica nanoparticles as chlorpyrifos carrier against the beetle pests Rhyzopertha dominica and Tribolium confusum. J Entomol Soc Iran 37(2):235–247. https://doi.org/10.1127/entomologia/2017/0406

    Article  Google Scholar 

  108. Kallur R, Patil S (2019) To evaluate the effect of pesticide activity of of nanoformulations of Alstonia scholaris, against Pest-Rhyzopertha dominica using HPLC and fourier transform infrared (FT-IR) spectra analysis. Int J 2(3):294

  109. Diagne A, Diop BN, Ndiaye PM, Andreazza C, Sembene M (2019) Efficacy of Silica Nanoparticles on Groundnut Bruchid, Caryedon serratus (Olivier) (Coleoptera, Bruchidae). Afr Crop Sci J 27(2):229–235. https://doi.org/10.4314/acsj.v27i2.8

    Article  Google Scholar 

  110. Khalil MS (2019) Efficacy of some nanoparticles against the adults of red flour beetle Tribolium castaneum (Herbst) under laboratory conditions. Ann Agric Sci Moshtohor 57(2):535–540. https://doi.org/10.21608/assjm.2019.44940

    Article  Google Scholar 

  111. Rouhani M, Samih MA, Zarabi M, Beiki K, Gorji M, Aminizadeh MR (2019) Synthesis and entomotoxicity assay of zinc and silica nanoparticles against Sitophilus granarius (Coleoptera: Curculionidae). J Plant Prot Res 59:26–31. https://doi.org/10.24425/jppr.2019.126033

    Article  CAS  Google Scholar 

  112. Abdelfattah NA, Zein DM (2019) Biological studies and toxicity experiments of Aerosil 200 nanoparticles on adults and larvae of some stored grain insects. Int J Entomol Res 4(1):103–108

    Google Scholar 

  113. Annon MR, Jafar FS (2020) The effectiveness of silver and silica nanoparticles on productivity and adult emergence of T. castaneum and C. maculatus November. J Phys.: Conf Ser, 1st International Virtual Conference on Pure Science.;1664(1): 012110). IOP. Publishing. https://doi.org/10.1088/1742-6596/1664/1/012110

  114. Hofmann T, Lowry GV, Ghoshal S, Tufenkji N, Brambilla D, Dutcher JR et al (2020) Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nat Food 1(7):416–425. https://doi.org/10.1038/s43016-020-0110-1

    Article  CAS  Google Scholar 

  115. Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH (2019) Nano-based smart pesticide formulations: emerging opportunities for agriculture. J Control Release 294:131–153. https://doi.org/10.1016/j.jconrel.2018.12.012

    Article  CAS  PubMed  Google Scholar 

  116. Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14(6):532–540. https://doi.org/10.1038/s41565-019-0439-5

    Article  CAS  PubMed  Google Scholar 

  117. Athulya R, Nandini J, Bhoi TK, Sundararaj R (2023) Recent advances of nanotechnology in wood protection: a comprehensive review. Wood Mater Sci Eng 29:1–2. https://doi.org/10.1080/17480272.2023.2239800

    Article  Google Scholar 

  118. Jinger D, Dhar S, Dass A, Sharma VK, Jhorar P, Paramesh V, Gupta G, Parihar M, Kumar D, Singh S, Samal I. Bhoi TK, JAT RA (2023) Combined fertilization of silicon and phosphorus in aerobic rice-wheat cropping and its impact on system productivity, water use efficiency, soil health, crop resilience, and profitability. Silicon 31:1-2. https://doi.org/10.1007/s12633-023-02598-x

  119. Helmy EAM, San PP, Zhang YZ, Adarkwah C, Tuda M (2023) Entomotoxic efficacy of fungus-synthesized nanoparticles against immature stages of stored bean pests. Sci Rep 13(1):8508. https://doi.org/10.1038/s41598-023-35697-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. San PP, Zhang YZ, Helmy EAM, Adarkwah C, Tuda M (2023) Sex-dependent effects of biosynthesized nanoparticles on stored bean pests and their non-target parasitoid. Crop Prot 173:106352. https://doi.org/10.1016/j.cropro.2023.106352

    Article  CAS  Google Scholar 

  121. Mesbah A, Tayeb ES, Kordy A, Ghitheeth H (2017) Comparative insecticidal activity of Nano and coarse silica on the Chinese beetle Callosobruchus chinensis (L.)(Coleoptera: Bruchidae). Alex Sci Exch J 38:654–660

    Google Scholar 

  122. Ziaee M, Babamir-Satehi A (2020) Insecticidal efficacy of silica nanoparticles loaded with several insecticides in controlling khapra beetle larvae, Trogoderma granarium on mosaic and galvanized steel surfaces. Plant Prot 43(2):35–47. https://doi.org/10.22055/ppr.2020.15975

    Article  Google Scholar 

  123. Salem AA (2020) Comparative insecticidal activity of three forms of silica nanoparticles on some main stored product insects. J Plant Prot Pathol 11(4):225–230. https://doi.org/10.21608/jppp.2020.96009

    Article  Google Scholar 

  124. Agrafioti P, Faliagka S, Lampiri E, Orth M, Pätzel M, Katsoulas N et al (2020) Evaluation of silica-coated insect proof nets for the control of aphis fabae, Sitophilus oryzae, and Tribolium confusum. Nanomaterials (Basel) 10(9):1658. https://doi.org/10.3390/nano10091658

  125. Saed B, Ziaee M, Kiasat AR, Jafari nasab M (2022) Preparation of nanosilica from sugarcane bagasse ash for enhanced insecticidal activity of diatomaceous earth against two stored-products insect pests. Toxin Rev 41(2):516-22. https://doi.org/10.1080/15569543.2021.1903038

  126. Kojom Foko LP, Eya’ane Meva F, Eboumbou Moukoko CE, Ntoumba AA, Ekoko WE, Ebanda Kedi Belle Pet al (2021) Green-synthesized metal nanoparticles for mosquito control: A systematic review about their toxicity on non-target organisms. Acta Trop 214:105792. https://doi.org/10.1016/j.actatropica.2020.105792

  127. Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24(14):2558. https://doi.org/10.3390/molecules24142558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hala HA, Elsamahy MF (2016) Relative toxicity of silica nanoparticles to two tetranychids and three associated predators. Egypt J Biol Pest Control 26(2):283

  129. Vurro M, Miguel Rojas C, Pérez de Luque A (2019) Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. Pest Manag Sci 75(9):2403–2412. https://doi.org/10.1002/ps.5348

    Article  CAS  PubMed  Google Scholar 

  130. Satehi AB, Ziaee M, Ashrafi A (2017) Silica nanoparticles: a potential carrier of chlorpyrifos in slurries to control two insect pests of stored products. Entomol Gen 37(1):77–91. https://doi.org/10.1127/entomologia/2017/0406

    Article  Google Scholar 

  131. Annon MR, Jafar FS (2020) The effectiveness of silver and silica nanoparticles on productivity and adult emergence of T. castaneum and C. maculatus. J Phys Conf S. 1664 1: 012110

Download references

Acknowledgements

The authors are thankful to the Director, ICFRE-Arid Forest Research Institute, Jodhpur, Rajasthan for necessary guidance & support for this study. No specific fund is received for this research work.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

IS, TKB: conceptualization, writing original draft preparation and supervision; DKM, JK: preparation of figures, and table; SB, VV: conceptualization, preparation of figures, supervision, review and editing. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Ipsita Samal or Tanmaya Kumar Bhoi.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ipsita Samal and Tanmaya Kumar Bhoi should be considered as co-corresponding authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatnagar, S., Mahanta, D.K., Vyas, V. et al. Storage Pest Management with Nanopesticides Incorporating Silicon Nanoparticles: a Novel Approach for Sustainable Crop Preservation and Food Security. Silicon 16, 471–483 (2024). https://doi.org/10.1007/s12633-023-02694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02694-y

Keywords

Navigation