Skip to main content

Advertisement

Log in

Nano-zinc oxide synthesized using diazotrophic Azospirillum improves the growth of mung bean, Vigna radiata

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Nanofertilizers have gained more interest in the agricultural sector for enhancing the crop production. In addition, bionanofertilizers are eco-friendly when compared to the chemical fertilizers. Two diazotrophic Azospirillum strains were isolated and characterized from soil samples in the present study. Then, Azospirillum-capped ZnO NPs (As-ZnO NPs) was green synthesized and characterized by bio-physical techniques. UV–Vis spectrum exhibited an absorbance peak at 386 nm. The presence of diffraction peak in XRD indicates the pure crystalline form of As-ZnO NPs. The various functional molecules involved in the bioreduction of Zn+ to ZnO were noticed through FTIR spectroscopy. SEM micrograph confirmed the presence of spherical nanostructures with a mean size of 20.6 nm. A significant increase in the seed germination rate (95%) and leaf area index (LAI) (45.6%) was observed in strain 2-mediated ZnO NPs at 30 days after treatment (DAT). Similarly, following treatment with strain 2-mediated ZnO NPs (T4), the number of roots, root length, shoot length, fresh weight and dry weight were 8.4, 9.6 cm, 21.4 cm, 2.05 g, and 0.915 g, respectively. Treatment with strain 2-mediated ZnO NPs (T4), the chlorophyll A, B and AB, and carotenoid contents were 4.445, 10.36 and 10.98, and 11.08 mg g−1, respectively. The results showed that As-ZnO NPs were potential nanofertilizer and could be used in agriculture for sustainable food production. In addition, the developed nanofertilizers are eco-friendly and do not harm the environment when compared to chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Available.

Code availability

Not applicable.

References

  1. Hulakoti, N.I., Taranath, T.C.: Biosynthesis of nanoparticles using microbes: a review. Colloids Surf. Biol. Interfaces. 121, 474–483 (2014)

    Article  Google Scholar 

  2. Cassán, F., Díaz-Zorita, M.: Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103, 117–130 (2016)

    Article  Google Scholar 

  3. Sharma, A., Patni, B., Shankhdhar, D., Shankhdhar, S.C.: Zinc—an indispensable micronutrient. Physiol. Mol. Biol. Plants. 19(1), 11–20 (2013)

    Article  CAS  Google Scholar 

  4. Youssef, M.M.A., Eissa, M.F.M.: Biofertilizers and their role in management of plant parasitic nematodes: a review. E3 J. Biotechnol. Pharm. Res. 5, 1–6 (2014)

    Google Scholar 

  5. Maikozhundan, B., Vinodhini, J.: Nanopesticidal effects of Pongamia pinnata leaf extract coated zinc oxide nanoparticle against the Pulse beetle Callosobruchus maculatus. Mater. Today Commun. 14, 106–115 (2018)

    Article  Google Scholar 

  6. Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Merlin, P.T.: Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the Pulse beetle, Callosobruchus maculatus. J. Photochem. Photobiol. 174, 306–314 (2017)

    Article  CAS  Google Scholar 

  7. Ahmad, F., Ahmad, I., Khan, M.S.: Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163, 173–181 (2008)

  8. Sharma, S. D., Kumar, P., Raj, H., Bhardwaj, S. K.: Isolation of arbuscular mycorrhizal fungi and Azotobacter chroococcum from local litchi orchards and evaluation of their activity in the air-layers system. Sci. Hortic. 123, 117–123 (2009)

  9. Malaikozhundan, B., Vinodhini, J., Rajamohamed Kalanjiam, M., Vinotha, V., Palanisamy, S., Vijayakumar, S., Vaseeharan, B., Mariyappan, A.: High synergistic antibacterial, antibiofilm, antidiabetic and antimetabolic activity of Withania somnifera leaf extract-assisted zinc oxide nanoparticle. Bioprocess Biosyst. Eng. 2020(43), 1533–1547 (2020)

    Article  Google Scholar 

  10. Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Sudhakaran, R., Gobi, N., Shanthini, G.: Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal. Agric. Biotechnol. 8, 189–196 (2016)

    Article  Google Scholar 

  11. Rajiv, P., Vanathi, P.: Effect of Parthenium based vermicompost and zinc oxide nanoparticles on growth and yield of Arachis hypogaea L. in zinc deficient soil. Biocatal. Agric. Biotechnol. 13, 251–257 (2018)

    Article  Google Scholar 

  12. Megali, L., Glauser, G., Rasmann, S.: Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron. Sustain. Dev. 34, 649–656 (2014)

    Article  CAS  Google Scholar 

  13. Bergey, D.H., Holt, J.G.: Bergey's Manual of Determinative Bacteriology. 9th Edn, Williams & Wilkins, Baltimore, Maryland (1994)

  14. Sahoo, R.K., Ansari, M.W., Pradhan, M., Dangar, T.K., Mohanty, S., Tuteja, N.: Phenotypic and molecular characterization of efficient native Azospirillum strains from rice fields for crop improvement. Protoplasma 251, 943–953 (2014)

    Article  CAS  Google Scholar 

  15. Sinha, R.K., Valani, D., Chauhan, K., Agarwal, S.: Embarking on a second green revolution for sustainable agriculture by vermiculture biotechnology using earthworms: reviving the dreams of Sir Charles Darwin. Int. J. Agric. Health Saf. 1, 50–64 (2014)

    Google Scholar 

  16. Gupta, G., Parihar, S.S., Ahirwar, N.K., Snehi, S.K., Singh, V.: Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7, 96–102 (2015)

    CAS  Google Scholar 

  17. Chauhan, H.S., Bagyaraj, D.J., Selvakumar, G., Sundaram, S.P.: Novel plant growth promoting rhizobacteria—prospects and potential. Appl. Soil Ecol. 95, 38–53 (2015)

    Article  Google Scholar 

  18. Andrews, D., Nann, T., Lipson, R.H.: Comprehensive nanoscience and nanotechnology. Academic Press, Cambridge (2019)

    Google Scholar 

  19. Pestovsky, Y.S., Martínez-Antonio, A.: The use of nanoparticles and nanoformulations in agriculture. J. Nanosci. Nanotechnol. 17, 8699–8730 (2017)

    Article  CAS  Google Scholar 

  20. Peters, R., Brandhoff, P., Weigel, S., Marvin, H., Bouwmeester, H., Aschberger, K., et al.: Inventory of nanotechnology applications in the agricultural, feed and food sector, p. 11. EFSA Supporting Publications, Parma (2014)

    Google Scholar 

  21. Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey, J.L., et al.: Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6, 2002–2030 (2019)

    Article  CAS  Google Scholar 

  22. Shang, Y., Hasan, M.K., Ahammed, G.J., Li, M., Yin, H., Zhou, J.: Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24, 2558–2580 (2019)

    Article  CAS  Google Scholar 

  23. Kupryashina, M.A., Vetchinkina, E.P., Burov, A.M., Ponomareva, E.G., Nikitina, V.E.: Biosynthesis of gold nanoparticles by Azospirillum brasilense. Microbiology 82(6), 833–840 (2013)

    Article  CAS  Google Scholar 

  24. Shamsuzzaman, A., Mashrai, H., Khanam, R.N., Aljawfi, R.N.: Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 10(2), S1530–S1536 (2013)

    Google Scholar 

  25. Kalia, A., Sharma, S.P., Kaur, H.: Nanoscale fertilizers: harnessing boons for enhanced nutrient use efficiency and crop productivity. In: Abd-Elsalam, K.A., Prasad, R. (eds.) Nanobiotechnology applications in plant protection nanotechnology in the life sciences, vol. 2, pp. 191–208. Springer, Cham (2019)

    Chapter  Google Scholar 

  26. Jyothi, T.V., Hebsur, N.S.: Effect of nanofertilizers on growth and yield of selected cereals—a review. Agric. Rev. 38, 112–120 (2017)

    Google Scholar 

  27. Kalia, A., Sharma, S.P.: Nanomaterials and vegetable crops: realizing the concept of sustainable production. In: Pudake, R.N., Chauhan, N., Kole, C. (eds.) Nanoscience for sustainable agriculture, pp. 323–353. Springer, Cham (2019)

    Chapter  Google Scholar 

  28. Kah, M., Kookana, R.S., Gogos, A., Bucheli, T.D.: A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018)

    Article  CAS  Google Scholar 

  29. Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., Pokhrel, L.R.: Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 715, 136994 (2020)

    Article  CAS  Google Scholar 

  30. Mahil, E.I.T., Kumar, B.A.: Foliar application of nanofertilizers in agricultural crops—ā review. J. Farm Sci. 32(3), 239–249 (2019)

    Google Scholar 

  31. Du, W., Yang, J., Peng, Q., Liang, X., Mao, H.: Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: from toxicity and zinc biofortification. Chemosphere 227, 109–116 (2019)

    Article  CAS  Google Scholar 

  32. Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., Zahid, R., Alam, M.F.E., Imran, M.: Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Dig. J. Nanomater. Biosyst. 13, 315–323 (2018)

    Google Scholar 

  33. Salama, D.M., Osman, S.A., Abd El-Aziz, M.E., Elwahed, M.S.A.A., Shaaban, E.A.: Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 18, 1–8 (2019)

    Article  Google Scholar 

  34. Prasad, R., Bhattacharyya, A., Nguyen, Q.D.: Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol. 8, 1014 (2017)

    Article  Google Scholar 

  35. El-Ramady, H.R., Alshaal, T.A., Shehata, S.A., Domokos-Szabolcsy, E., Elhawat, N., Prokisch, J., Fari, M., Marton, L.: Plant nutrition: from liquid medium to micro-farm. In: Ozier-Lafontaine, H., Lesueur-Jannoyer, M. (eds.) Sustainable agriculture reviews 14 (agroecology and global change), sustainable agriculture reviews, vol. 14, pp. 449–508. Springer, Cham (2014)

    Chapter  Google Scholar 

  36. Solanki, P., Bhargava, A., Chhipa, H., Jain, N., Panwar, J.: Nano-fertilizers and their smart delivery system in agriculture. In: Nanoscience in food and agriculture, pp. 81–101. Springer, Berlin (2016)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Professor and Head, Department of Biology, The Gandhigram Rural Institute (Deemed to be University), Gandhigram for his support to perform this research. The authors gratefully acknowledge the Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram for their support in SEM analysis.

Funding

No funding sources.

Author information

Authors and Affiliations

Authors

Contributions

NM: conceptualization, design, methodology, and writing original draft, SA: investigation, methodology, data curation, and formal analysis, BM: writing—review and editing, statistics, TB: methodology, software, review and editing. All the authors approved the final version of this manuscript.

Corresponding author

Correspondence to Balasubramanian Malaikozhundan.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

All the co-authors have given consent for publication in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 133 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manivannan, N., Aswathy, S., Malaikozhundan, B. et al. Nano-zinc oxide synthesized using diazotrophic Azospirillum improves the growth of mung bean, Vigna radiata. Int Nano Lett 11, 405–415 (2021). https://doi.org/10.1007/s40089-021-00351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00351-z

Keywords

Navigation