Skip to main content

Advertisement

Log in

Hydroconversion of Crude Palm Oil Over Highly Dispersed Porous Silica Modified Zirconium Nitride: Effect of EDTA and KHF Template

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the present paper, the effect of potassium hydrogen phthalate (KHF) and ethylenediaminetetraacetic acid (EDTA) as new templating agents on the features and catalytic activity of SiO2/ZrN was reported. SiO2/ZrN was successfully prepared by nitridation technique using an ammonia stream under a high-temperature reaction. As-prepared catalyst was tested for crude palm oil (CPO) hydroconversion. Both modified catalysts reveal a distinctive feature compared to parent silica as well SiO2/Zr and successfully enhanced the acidity features and the textural properties of the catalyst as well. SiO2/ZrN-EDTA dominantly formed a homogeneous pore size distribution with a mesoporous cavity, whereas SiO2/ZrN-EDTA directed the pore size towards micropores with a narrow pore size distribution. Further, the parent catalyst's particle size is also affected by this treatment, in which SiO2/ZrN-KHF exhibits the smallest average particle size, followed by the SiO2/ZrN-EDTA with a narrow particle size distribution. Hydrocracking of CPO showed an increase in the CPO hydroconversion, while simultaneously enhancing the liquid yield, suggesting a positive correlation with its acidity features. Prominently, SiO2/ZrN-KHF promotes a higher selectivity towards biogasoline, whereas SiO2/ZrN-EDTA enhances biokerosene selectivity. A reusability study revealed that SiO2/ZrN-based catalyst successfully inhibited the catalyst deactivation, showing adequate hydroconversion stability within 3 consecutive runs compared to parent silica and SiO2/Zr catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang Z, Cheng J, Zhu Y, Guo H, Yang W (2020) Jet fuel range hydrocarbons production through competitive pathways of hydrocracking and isomerization over HPW-Ni/MCM-41 catalyst. Fuel 269:117465. https://doi.org/10.1016/j.fuel.2020.117465

    Article  CAS  Google Scholar 

  2. Lin M, Zhang X, Zhan L, Li X, Song X, Wu Y (2022) Product distribution-tuned and excessive hydrocracking inhibiting in fatty acid deoxygenation over amorphous Co@SiO2 porous nanorattles. Fuel 318:123605. https://doi.org/10.1016/j.fuel.2022.123605

    Article  CAS  Google Scholar 

  3. Rodríguez-Fernández J, Hernández JJ, Calle-Asensio A, Ramos Á, Barba J (2019) Selection of blends of diesel fuel and advanced biofuels based on their physical and thermochemical properties. Energies 12:2034. https://doi.org/10.3390/en12112034

    Article  CAS  Google Scholar 

  4. Rabie AM, Mohammed EA, Negm NA (2018) Feasibility of modified bentonite as acidic heterogeneous catalyst in low temperature catalytic cracking process of biofuel production from nonedible vegetable oils. J Mol Liq 254:260–266. https://doi.org/10.1016/j.molliq.2018.01.110

    Article  CAS  Google Scholar 

  5. Taufiqurrahmi N, Bhatia S (2011) Catalytic cracking of edible and non-edible oils for the production of biofuels. Energy Environ Sci 4:1087–1112. https://doi.org/10.1039/c0ee00460j

    Article  CAS  Google Scholar 

  6. Papageridis KN, Charisiou ND, Douvartzides S, Sebastian V, Hinder SJ, Baker MA, AlKhoori AA, AlKhoori SI, Polychronopoulou K, Goula MA (2021) Continuous selective deoxygenation of palm oil for renewable diesel production over Ni catalysts supported on Al2O3 and La2O3-Al2O3. RSC Adv 11:8569–8584. https://doi.org/10.1039/d0ra08541c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vivek N, Sindhu R, Madhavan A, Anju AJ, Castro E, Faraco V, Pandey A, Binod P (2017) Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate – metabolic aspects, challenges and possibilities: An overview. Bioresour Technol 239:507–517. https://doi.org/10.1016/j.biortech.2017.05.056

    Article  CAS  PubMed  Google Scholar 

  8. Veriansyah B, Han JY, Kim SK, Hong SA, Kim YJ, Lim JS, Shu YW, Oh SG, Kim J (2012) Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts. Fuel 94:578–585. https://doi.org/10.1016/j.fuel.2011.10.057

    Article  CAS  Google Scholar 

  9. Hasanudin H, Asri WR, Zulaikha IS, Ayu C, Rachmat A, Riyanti F, Hadiah F, Zainul R, Maryana R (2022) Hydrocracking of crude palm oil to a biofuel using zirconium nitride and zirconium phosphide-modified bentonite. RSC Adv 12:21916–21925. https://doi.org/10.1039/d2ra03941a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartati TW, Mukti RR, Kartika IA, Firda PBD, Sumbogo SD, Prasetyoko D, Bahruji H (2020) Highly selective hierarchical ZSM-5 from kaolin for catalytic cracking of Calophyllum inophyllum oil to biofuel. J Energy Inst 93:2238–2246. https://doi.org/10.1016/j.joei.2020.06.006

    Article  CAS  Google Scholar 

  11. Ge S, Ganesan R, Sekar M, Xia C, Shanmugam S, Alsehli M, Brindhadevi K (2022) Blending and emission characteristics of biogasoline produced using CaO/SBA-15 catalyst by cracking used cooking oil. Fuel 307:121861. https://doi.org/10.1016/j.fuel.2021.121861

    Article  CAS  Google Scholar 

  12. Da Mota SDP, Mancio AA, Lhamas DEL, De Abreu DH, Da Silva MS, Dos Santos WG, De Castro DAR, De Oliveira RM, Araújo ME, Borges LEP, Machado NT (2014) Production of green diesel by thermal catalytic cracking of crude palm oil (Elaeis guineensis Jacq) in a pilot plant. J Anal Appl Pyrolysis 110:1–11. https://doi.org/10.1016/j.jaap.2014.06.011

    Article  CAS  Google Scholar 

  13. Singh HKG, Yusup S, Quitain AT, Abdullah B, Inayat A, Ameen M, Cheah KW, Sasaki M, Kida T, Chai YH (2021) Five-lump kinetic approach on biofuel production from refined rubber seed oil over Cu/ZSM-5 catalyst via catalytic cracking reaction. Renew Energy 171:1445–1453. https://doi.org/10.1016/j.renene.2021.02.085

    Article  CAS  Google Scholar 

  14. Sousa FP, Silva LN, de Rezende DB, de Oliveira LCA, Pasa VMD (2018) Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel 223:149–156. https://doi.org/10.1016/j.fuel.2018.03.020

    Article  CAS  Google Scholar 

  15. Istadi I, Riyanto T, Khofiyanida E, Buchori L, Anggoro DD, Sumantri I, Putro BHS, Firnanda AS (2021) Low-oxygenated biofuels production from palm oil through hydrocracking process using the enhanced Spent RFCC catalysts. Bioresour Technol Reports 14:100677. https://doi.org/10.1016/j.biteb.2021.100677

    Article  CAS  Google Scholar 

  16. Hasanudin H, Asri WR, Said M, Hidayati PT, Purwaningrum W, Novia N, Wijaya K (2022) Hydrocracking optimization of palm oil to bio-gasoline and bio-aviation fuels using molybdenum nitride-bentonite catalyst. RSC Adv 12:16431–16443. https://doi.org/10.1039/D2RA02438A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Istadi I, Riyanto T, Buchori L, Anggoro DD, Pakpahan AWS, Pakpahan AJ (2021) Biofuels production from catalytic cracking of palm oil using modified HY zeolite catalysts over a continuous fixed bed catalytic reactor. Int J Renew Energy Dev 10:149–156. https://doi.org/10.14710/ijred.2021.33281

    Article  CAS  Google Scholar 

  18. Jeong H, Bathula HB, Kim TW, Han GB, Jang JH, Jeong B, Suh YW (2021) Long-term stability of a mesoporous alumina-supported pt catalyst in the hydrodeoxygenation of palm oil. ACS Sustain Chem Eng 9:1193–1202. https://doi.org/10.1021/acssuschemeng.0c06658

    Article  CAS  Google Scholar 

  19. Li T, Cheng J, Huang R, Yang W, Zhou J, Cen K (2016) Hydrocracking of palm oil to jet biofuel over different zeolites. Int J Hydrogen Energy 41:21883–21887. https://doi.org/10.1016/j.ijhydene.2016.09.013

    Article  CAS  Google Scholar 

  20. Tye CT, Looi PY, Meow TL (2012) Hydroprocessing of crude palm oil to bio-diesel using mesoporous catalysts. Adv Mater Res 560–561:538–543. https://doi.org/10.4028/www.scientific.net/AMR.560-561.538

    Article  CAS  Google Scholar 

  21. Studentschnig AFH, Schober S, Mittelbach M (2013) Conversion of crude palm oil into hydrocarbons over commercial Raney nickel. Energy Fuels 27:7480–7484. https://doi.org/10.1021/ef401665x

    Article  CAS  Google Scholar 

  22. Srihanun N, Dujjanutat P, Muanruksa P, Kaewekannetra P (2020) Biofuels of green diesel– kerosene–gasoline production from palm oil : effect of palladium cooperated with second metal on hydrocracking reaction. Catalysts 10:241. https://doi.org/10.3390/catal10020241

    Article  CAS  Google Scholar 

  23. Subsadsana M, Sangdara P, Ruangviriyachai C (2017) Effect of bimetallic NiW modified crystalline ZSM-5 zeolite on catalytic conversion of crude palm oil and identification of biofuel products. Asia-Pacific J Chem Eng 12:147–158. https://doi.org/10.1002/apj.2061

    Article  CAS  Google Scholar 

  24. Ruangudomsakul M, Osakoo N, Wittayakun J, Keawkumay C, Butburee T, Youngjan S, Faungnawakij K, Poo-arporn Y, Kidkhunthod P, Khemthong P (2021) Hydrodeoxygenation of palm oil to green diesel products on mixed-phase nickel phosphides. Mol Catal 523:111422. https://doi.org/10.1016/j.mcat.2021.111422

    Article  CAS  Google Scholar 

  25. Allwar A, Maulina R, Julianto TS, Widyaningtyas AA (2022) Hydrocracking of crude palm oil over bimetallic oxide Nio-CdO/biochar catalyst. Bull Chem React Eng Catal 17:476–485. https://doi.org/10.9767/bcrec.17.2.14074.476-485

    Article  CAS  Google Scholar 

  26. Kaewchada A, Akkarawatkhoosith N, Bunpim D, Bangjang T, Ngamcharussrivichai C, Jaree A (2021) Production of bio-hydrogenated diesel from palm oil using Rh/HZSM-5 in a continuous mini fixed-bed reactor. Chem Eng Process - Process Intensif 168:108586. https://doi.org/10.1016/j.cep.2021.108586

    Article  CAS  Google Scholar 

  27. Subsadsana M, Sansuk S, Ruangviriyachai C (2018) Enhanced liquid biofuel production from crude palm oil over synthesized NiMoW-ZSM-5/MCM-41 catalyst. Energy Sources, Part A Recover Util Environ Eff 40:237–243. https://doi.org/10.1080/15567036.2017.1411992

    Article  CAS  Google Scholar 

  28. Sierra-salazar AF, Li WSJ, Bathfield M, Ayral A, Abate S, Chave T, Nikitenko SI, Hulea V, Perathoner S, Lacroix-desmazes P (2018) Hierarchically porous Pd/SiO2 catalyst by combination of miniemulsion polymerisation and sol-gel method for the direct synthesis of H 2 O 2. Catal Today 306:16–22. https://doi.org/10.1016/j.cattod.2016.12.021

    Article  CAS  Google Scholar 

  29. Shu R, Xu Y, Chen P, Ma L, Zhang Q, Zhou L, Wang C (2017) Mild hydrogenation of lignin depolymerization products over Ni/SiO2 catalyst. Energy Fuels 31:7208–7213. https://doi.org/10.1021/acs.energyfuels.7b00934

    Article  CAS  Google Scholar 

  30. Wu C, Williams PT (2010) A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol. Environ Sci Technol 44:5993–5998. https://doi.org/10.1021/es100912w

    Article  CAS  PubMed  Google Scholar 

  31. Yao L, Shi J, Xu H, Shen W, Hu C (2016) Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst. Fuel Process Technol 144:1–7. https://doi.org/10.1016/j.fuproc.2015.12.009

    Article  CAS  Google Scholar 

  32. Tu YJ, Chen YW (2001) Effects of alkali metal oxide additives on Cu/SiO2 catalyst in the dehydrogenation of ethanol. Ind Eng Chem Res 40:5889–5893. https://doi.org/10.1021/ie010272q

    Article  CAS  Google Scholar 

  33. Lomate S, Sultana A, Fujitani T (2017) Effect of SiO2 support properties on the performance of Cu-SiO2 catalysts for the hydrogenation of levulinic acid to gamma valerolactone using formic acid as a hydrogen source. Catal Sci Technol 7:3073–3083. https://doi.org/10.1039/c7cy00902j

    Article  CAS  Google Scholar 

  34. Giniyatova S, Dauletbekova A, Baimukhanov Z, Vlasukova L, Akilbekov A, Usseinov A, Kozlovskiy A, Akylbekova A, Seitbayev A, Karipbayev Z (2019) Structure, electrical properties and luminescence of ZnO nanocrystals deposited in SiO2/Si track templates. Radiat Meas 125:52–56. https://doi.org/10.1016/j.radmeas.2019.04.001

    Article  CAS  Google Scholar 

  35. Wang H, Chen Z, Chen D, Yu Q, Yang W, Zhou J, Wu S (2019) Facile, template-free synthesis of macroporous SiO2 as catalyst support towards highly enhanced catalytic performance for soot combustion. Chem Eng J 375:121958. https://doi.org/10.1016/j.cej.2019.121958

    Article  CAS  Google Scholar 

  36. Zhu Q, Zhang H, Zhang S, Wang G, Zhu X, Li C (2019) Dehydrogenation of isobutane over a Ni-P/SiO2 catalyst: effect of P addition. Ind Eng Chem Res 58:7834–7843. https://doi.org/10.1021/acs.iecr.9b00032

    Article  CAS  Google Scholar 

  37. Mashkin M, Tedeeva M, Fedorova A, Vasiliev A, Egorov A, Pribytkov P, Kalmykov K, Kapustin G, Morozov I, Kustov L, Kustov A (2022) CrOx/SiO2 mesoporous catalysts prepared using beta-cyclodextrin as a template and their catalytic properties in propane oxidative dehydrogenation in the presence of carbon dioxide. Microporous Mesoporous Mater 338:111967. https://doi.org/10.1016/j.micromeso.2022.111967

    Article  CAS  Google Scholar 

  38. Vasiliadou ES, Lemonidou AA (2011) Parameters affecting the formation of 1,2-propanediol from glycerol over Ru/SiO2 catalyst. Org Process Res Dev 15:925–931. https://doi.org/10.1021/op2000173

    Article  CAS  Google Scholar 

  39. Boullosa-Eiras S, Lødeng R, Bergem H, Stöcker M, Hannevold L, Blekkan EA (2014) Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catal Today 223:44–53. https://doi.org/10.1016/j.cattod.2013.09.044

    Article  CAS  Google Scholar 

  40. Ghampson IT, Sepúlveda C, Garcia R, Radovic LR, Fierro JLG, Desisto WJ, Escalona N (2012) Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties. Appl Catal A Gen 439–440:111–124. https://doi.org/10.1016/j.apcata.2012.06.047

    Article  CAS  Google Scholar 

  41. Zhao S, Song J, Xu R, Nie L, Ma J, Deng C, Cheng X, Zhao X, Hao S, Li J (2021) Fabrication of zirconium nitride nanopowder with a high specific surface area by introducing fructose as a double-function additive. Ceram Int 47:23267–23274. https://doi.org/10.1016/j.ceramint.2021.05.039

    Article  CAS  Google Scholar 

  42. Yuan Y, Wang J, Adimi S, Shen H, Thomas T, Ma R, Attfield JP, Yang M (2019) Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat Mater. https://doi.org/10.1038/s41563-019-0535-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kaplin IY, Lokteva ES, Golubina EV, Lunin VV (2020) Template synthesis of porous ceria-based catalysts for environmental application. Molecules 25:4242. https://doi.org/10.3390/molecules25184242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang Q, Tang T, Wang J, Sun M, Wang H, Sun H, Ning P (2019) Facile template-free synthesis of Ni-SiO2 catalyst with excellent sintering- and coking-resistance for dry reforming of methane. Catal Commun 131:105782. https://doi.org/10.1016/j.catcom.2019.105782

    Article  CAS  Google Scholar 

  45. Wijaya K, Saputri WD, Aziz ITA, Wangsa HE, Hakim L, Suseno A, Utami M (2022) Mesoporous silica preparation using sodium bicarbonate as template and application of the silica for hydrocracking of used cooking oil into biofuel. Silicon 14:1583–1591. https://doi.org/10.1007/s12633-021-00946-3

    Article  CAS  Google Scholar 

  46. Nadia A, Wijaya K, Falah II, Sudiono S, Budiman A (2022) Self-regeneration of monodisperse hierarchical porous NiMo/Silica catalyst induced by NaHCO3 for biofuel production. Waste Biomass Valor 13:2335–2347. https://doi.org/10.1007/s12649-021-01634-4

    Article  CAS  Google Scholar 

  47. Hasanudin H, Asri WR, Mara A, Al Muttaqii M, Maryana R, Rinaldi N, Sagadevan S, Zhang Q, Fanani Z, Hadiah F (2023) Enhancement of catalytic activity on crude palm oil hydrocracking over SiO2/Zr assisted with potassium hydrogen phthalate. ACS Omega. https://doi.org/10.1021/acsomega.3c01569

    Article  PubMed  PubMed Central  Google Scholar 

  48. Alayat AM, Echeverria E, Mcllroy DN, McDonald AG (2018) Characterization and catalytic behavior of EDTA modified silica nanosprings (NS)-supported cobalt catalyst for Fischer-Tropsch CO-hydrogenation. Ranliao Huaxue Xuebao/Journal Fuel Chem Technol 46:957–966. https://doi.org/10.1016/s1872-5813(18)30039-2

    Article  CAS  Google Scholar 

  49. Wijaya K, Kurniawan MA, Saputri WD, Trisunaryanti W, Mirzan M, Hariani PL, Tikoalu AD (2021) Synthesis of nickel catalyst supported on ZrO2/SO4 pillared bentonite and its application for conversion of coconut oil into gasoline via hydrocracking process. J Environ Chem Eng 9:105399. https://doi.org/10.1016/j.jece.2021.105399

    Article  CAS  Google Scholar 

  50. Putri QU, Hasanudin H, Asri WR, Mara A, Maryana R, Gea S, Wijaya K (2023) Production of levulinic acid from glucose using nickel phosphate - silica catalyst. React Kinet Mech Catal 136:287–309. https://doi.org/10.1007/s11144-022-02334-3

    Article  CAS  Google Scholar 

  51. Shawabkeh RA, Faqir NM, Rawajfeh KM, Hussein IA, Hamza A (2022) Adsorption of CO2 on Cu/SiO2 nano-catalyst: experimental and theoretical study. Appl Surf Sci 586:152726. https://doi.org/10.1016/j.apsusc.2022.152726

    Article  CAS  Google Scholar 

  52. Hasanudin H, Asri WR, Fanani Z, Adisti SJ, Hadiah F, Maryana R, Al Muttaqii M, Zhu Z, Machado NT (2022) Facile fabrication of SiO2/Zr assisted with EDTA complexed-impregnation and templated methods for crude palm oil to biofuels conversion via catalytic hydrocracking. Catalysts 12:1522. https://doi.org/10.3390/catal12121522

    Article  CAS  Google Scholar 

  53. Gan Y, Cui S, Ma X, Guo H, Wang Y (2020) Preparation of Cu-Al/SiO2 porous material and its effect on NO decomposition in a cement kiln. Materials 13:145. https://doi.org/10.3390/ma13010145

    Article  CAS  Google Scholar 

  54. Zhao S, Ma J, Xu R, Lin X, Cheng X, Hao S, Zhao X, Deng C, Liu B (2019) Synthesis and characterization of zirconium nitride nanopowders by internal gelation and carbothermic nitridation. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-55450-x

    Article  CAS  Google Scholar 

  55. Larijani MM, Tabrizi N, Norouzian S, Jafari A, Lahouti S, Haj HH, Afshari N (2006) Structural and mechanical properties of ZrN films prepared by ion beam sputtering with varying N2/Ar ratio and substrate temperature. Vacuum 81:550–555. https://doi.org/10.1016/j.vacuum.2006.07.018

    Article  CAS  Google Scholar 

  56. Ma Y, Liang R, Wu W, Zhang J, Cao Y, Huang K, Jiang L (2021) Enhancing the activity of MoS2/SiO2-Al2O3 bifunctional catalysts for suspended-bed hydrocracking of heavy oils by doping with Zr atoms. Chinese J Chem Eng 39:126–134. https://doi.org/10.1016/j.cjche.2021.03.015

    Article  CAS  Google Scholar 

  57. Barzegari F, Rezaei M, Kazemeini M, Farhadi F, Keshavarz AR (2022) Effect of rare-earth promoters (Ce, La, Y and Zr) on the catalytic performance of NiO-MgO-SiO2 catalyst in propane dry reforming. Mol Catal 522:112235. https://doi.org/10.1016/j.mcat.2022.112235

    Article  CAS  Google Scholar 

  58. Moghanian H, Mobinikhaledi A, Blackman AG, Sarough-Farahani E (2014) Sulfanilic acid-functionalized silica-coated magnetite nanoparticles as an efficient, reusable and magnetically separable catalyst for the solvent-free synthesis of 1-amido- and 1-aminoalkyl-2-naphthols. RSC Adv 4:28176–28185. https://doi.org/10.1039/c4ra03676j

    Article  CAS  Google Scholar 

  59. Wijaya K, Malau LLM, Utami M, Mulijani S, Patah A, Wibowo AC, Chandrasekaran M, Rajabathar JR, Al-Lohedan HA (2021) Synthesis, characterizations and catalysis of sulfated silica and nickel modified silica catalysts for diethyl ether (DEE) production from ethanol towards renewable energy applications. Catalysts 11:1511. https://doi.org/10.3390/catal11121511

    Article  CAS  Google Scholar 

  60. Aneu A, Wijaya K, Syoufian A (2021) Silica-based solid acid catalyst with different concentration of H2SO4 and calcination temperature: preparation and characterization. Silicon 13:2265–2270. https://doi.org/10.1007/s12633-020-00741-6

    Article  CAS  Google Scholar 

  61. Gobara HM, Hassan SA, Betiha MA (2016) The interaction characteristics controlling dispersion mode-catalytic functionality relationship of silica–modified montmorillonite-anchored Ni nanoparticles in petrochemical processes. Mater Chem Phys 181:476–486. https://doi.org/10.1016/j.matchemphys.2016.06.084

    Article  CAS  Google Scholar 

  62. Sakti La Ore M, Wijaya K, Trisunaryanti W, Saputri WD, Heraldy E, Yuwana NW, Hariani PL, Budiman A, Sudiono S (2020) The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel. J Environ Chem Eng 8:104205. https://doi.org/10.1016/j.jece.2020.104205

    Article  CAS  Google Scholar 

  63. García-Sancho C, Moreno-Tost R, Mérida-Robles J, Santamaría-González J, Jiménez-López A, Maireles-Torres P (2012) Zirconium doped mesoporous silica catalysts for dehydration of glycerol to high added-value products. Appl Catal A Gen 433–434:179–187. https://doi.org/10.1016/j.apcata.2012.05.015

    Article  CAS  Google Scholar 

  64. Williams S, Neumann A, Bremer I, Su Y, Dräger G, Kasper C, Behrens P (2015) Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing. J Mater Sci Mater Med 26:125. https://doi.org/10.1007/s10856-015-5409-3

    Article  CAS  PubMed  Google Scholar 

  65. Majewski AJ, Wood J, Bujalski W (2013) Nickel-silica core@shell catalyst for methane reforming. Int J Hydrogen Energy 38:14531–14541. https://doi.org/10.1016/j.ijhydene.2013.09.017

    Article  CAS  Google Scholar 

  66. Li H, Wang L, Wei Y, Yan W, Feng J (2022) Preparation of templated materials and their application to typical pollutants in wastewater : a review. Front Chem 10:882876. https://doi.org/10.3389/fchem.2022.882876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nasseri MA, Sadeghzadeh M (2013) Multi-component reaction on free nano-SiO2 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. J Chem Sci 125:537–544. https://doi.org/10.1007/s12039-013-0403-0

    Article  CAS  Google Scholar 

  68. Abduraimova A, Molkenova A, Duisembekova A, Mulikova T, Kanayeva D, Atabaev TS (2021) Cetyltrimethylammonium bromide (CTAB)-loaded SiO2–Ag mesoporous nanocomposite as an efficient antibacterial agent. Nanomaterials 11:1–9. https://doi.org/10.3390/nano11020477

    Article  CAS  Google Scholar 

  69. Purwaningsih H, Ervianto Y, Pratiwi VM, Susanti D, Purniawan A (2019) Effect of cetyl trimethyl ammonium bromide as template of mesoporous silica MCM-41 from rice husk by sol-gel method. IOP Conf Ser Mater Sci Eng 515:012051. https://doi.org/10.1088/1757-899X/515/1/012051

    Article  CAS  Google Scholar 

  70. Wang L, Liu Y, Chen X, Qin H, Yang Z (2017) Zinc Aluminum antimony hydrotalcite as anode materials for Ni-Zn secondary batteries. J Electrochem Soc 164:A3692–A3698. https://doi.org/10.1149/2.0831714jes

    Article  CAS  Google Scholar 

  71. Alshabanat M, Al-Arrash A, Mekhamer W (2013) Polystyrene/montmorillonite nanocomposites: study of the morphology and effects of sonication time on thermal stability. J Nanomater 2013:650725. https://doi.org/10.1155/2013/650725

    Article  CAS  Google Scholar 

  72. Köseoglu RÖ, Phillips CR (1988) Effect of reaction variables on the catalytic hydrocracking of Athabasca bitumen. Fuel 67:1201–1204

    Article  Google Scholar 

  73. Utami M, Trisunaryanti W, Shida K, Tsushida M, Kawakita H, Ohto K, Wijaya K, Tominaga M (2019) Hydrothermal preparation of a platinum-loaded sulphated nanozirconia catalyst for the effective conversion of waste low density polyethylene into gasoline-range hydrocarbons. RSC Adv 9:41392–41401. https://doi.org/10.1039/c9ra08834b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wijaya K, Nadia A, Dinana A, Pratiwi AF, Tikoalu AD, Wibowo AC (2021) Catalytic hydrocracking of fresh and waste frying oil over ni-and mo-based catalysts supported on sulfated silica for biogasoline production. Catalysts 11:1150. https://doi.org/10.3390/catal11101150

    Article  CAS  Google Scholar 

  75. Aziz ITA, Saputri WD, Trisunaryanti W, Sudiono S, Syoufian A, Budiman A, Wijaya K (2022) Synthesis of nickel-loaded sulfated zirconia catalyst and its application for converting used palm cooking oil to gasoline via hydrocracking process. Period Polytech Chem Eng 66:101–113. https://doi.org/10.3311/PPch.18209

    Article  Google Scholar 

  76. Bokade V, Moondra H, Niphadkar P (2020) Highly active Brønsted acidic silicon phosphate catalyst for direct conversion of glucose to levulinic acid in MIBK–water biphasic system. SN Appl Sci 2:51. https://doi.org/10.1007/s42452-019-1827-z

    Article  CAS  Google Scholar 

  77. Zhang Y, Shao D, Yan J, Jia X, Li Y, Yu P, Zhang T (2016) The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. J Nat Gas Geosci 1:213–220. https://doi.org/10.1016/j.jnggs.2016.08.002

    Article  Google Scholar 

  78. Labani MM, Rezaee R, Saeedi A, Al HA (2013) Evaluation of pore size spectrum of gas shale reservoirs using low pressure nitrogen adsorption, gas expansion and mercury porosimetry: a case study from the Perth and Canning Basins, Western Australia. J Pet Sci Eng 112:7–16. https://doi.org/10.1016/j.petrol.2013.11.022

    Article  CAS  Google Scholar 

  79. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  80. Trisunaryanti W, Wijaya K, Triyono T, Adriani AR, Larasati S (2021) Green synthesis of hierarchical porous carbon prepared from coconut lumber sawdust as Ni-based catalyst support for hydrotreating Callophyllum inophyllum oil. Results Eng 11:100258. https://doi.org/10.1016/j.rineng.2021.100258

    Article  CAS  Google Scholar 

  81. Hasanudin H, Asri WR, Andini L, Riyanti F, Mara A, Hadiah F, Fanani Z (2022) Enhanced isopropyl alcohol conversion over acidic nickel phosphate-supported zeolite catalysts. ACS Omega 7:38923–38932. https://doi.org/10.1021/acsomega.2c04647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alisha GD, Trisunaryanti W, Syoufian A, Larasati S (2021) Synthesis of high stability Mo/SiO2 catalyst utilizing Parangtritis beach sand for hydrocracking waste palm oil into biofuel. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02064-x

    Article  Google Scholar 

  83. Sriningsih W, Saerodji MG, Trisunaryanti W, Armunanto R, Falah II (2014) Fuel production from LDPE plastic waste over natural zeolite supported Ni, Ni-Mo, Co and Co-Mo metals. Procedia Environ Sci 20:215–224. https://doi.org/10.1016/j.proenv.2014.03.028

    Article  CAS  Google Scholar 

  84. Escola JM, Aguado J, Serrano DP, Briones L, Tuesta JLD, De Calvo R, Fernandez E (2012) Conversion of polyethylene into transportation fuels by the combination of thermal cracking and catalytic hydroreforming over Ni-supported hierarchical beta zeolite. Energy Fuels 26:3187–3195

    Article  CAS  Google Scholar 

  85. Permata ML, Trisunaryanti W, Falah II, Hapsari MT, Fatmawati DA (2020) The effect of nickel content impregnated on zeolite toward catalytic activity and selectivity for hydrotreating of cashew nut shell liquid oil. Rasayan J Chem 13:772–779. https://doi.org/10.31788/RJC.2020.1315529

    Article  Google Scholar 

  86. Alvarez-Galvan MC, Campos-Martin JM, Fierro JLG (2019) Transition metal phosphides for the catalytic hydrodeoxygenation of waste oils into green diesel. Catalysts 9:293. https://doi.org/10.3390/catal9030293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the DRPM Ministry of Education, Culture, Research and Technology, Indonesia, for providing financial support for this study in the form of a PDUPT research grant with the number of 059/E5/PG.02.00.PL/2023.

Funding

PDUPT research grant with the number of 059/E5/PG.02.00.PL/2023.

Author information

Authors and Affiliations

Authors

Contributions

Wan Ryan Asri: Conceptualization, Methodology, Writing – original draft. Hasanudin Hasanudin: Validation, Data curation, Resources, Supervision. Karna Wijaya: Validation, Data curation, Resources, Supervision.

Corresponding author

Correspondence to Hasanudin Hasanudin.

Ethics declarations

Ethics Approval

This research does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All authors agreed to publish this study at silicon journal.

Competing Interests

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asri, W.R., Hasanudin, H. & Wijaya, K. Hydroconversion of Crude Palm Oil Over Highly Dispersed Porous Silica Modified Zirconium Nitride: Effect of EDTA and KHF Template. Silicon 16, 83–97 (2024). https://doi.org/10.1007/s12633-023-02659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02659-1

Keywords

Navigation