Skip to main content

Advertisement

Log in

Fabrication, Evaluation, and Performance Ranking of Tri-calcium Phosphate and Silica Reinforced Dental Resin Composite Materials

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Objective

The proposed study aimed to fabricate and evaluate the physical, mechanical, thermal, thermo-mechanical, and wear analysis of tri-calcium phosphate and silica filled dental resin composite materials.

Materials and Methods

Five dental composite series (TSi0, TSi1, TSi2, TSi3, and TSi4) were developed using organic and inorganic materials. Tricalcium phosphate (TCp) and silicon dioxide (SiO2) were used as filler particles. The amount of TCp varied from 0 to 4 wt.% while SiO2 was constant as 20 wt.%. In this work, physical (void content, water sorption, water solubility, and polymerization shrinkage), mechanical (compressive strength and Vickers hardness), thermal, thermo-mechanical, and wear analysis were investigated.

Results

The maximum water sorption and solubility were found in TSi4 designated dental composite. The depth of cure decreased with filler loading, with TSi0 achieving the maximum depth of cure. TSi4 displayed a 55.3% higher compressive strength than TSi1 and 8.6% less polymerization shrinkage than TSi0. The filler loading directly influenced the hardness. Fourier-transform infrared spectra showed shifts in peak wave numbers for nano silica and tricalcium phosphate fillers. TSi4 demonstrated the highest storage modulus at 426.01 MPa. In terms of thermal stability, TSi4 outperformed TSi3, TSi2, TSi1, and TSi0 within the temperature span of 25–300 °C, as determined by thermogravimetric analysis. Moreover, specific wear was evaluated through a pin-on-disc wear test rig and using Taguchi L25 orthogonal array to design the experiment with four factors: normal load, filler loading, RPM, and time. The hybrid dental resin composite substantially affected mechanical, thermal, and viscoelastic characteristics. Grey relational analysis (GRA) approach was used to determine the ranking of dental composites. According GRA method, TSi4 designated dental composite obtained first rank among the dental composites.

Significance

In conclusion, this research offers valuable insights into optimizing dental composite formulations to enhance the performance of dental restorative materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article and its supplementary material. No data was used for the research described in the article.

References

  1. Voruganti K (2008) Dental materials: properties and manipulation (9th edition). Br Dent J 204:160–160. https://doi.org/10.1038/bdj.2008.75

    Article  Google Scholar 

  2. Arifa MK, Ephraim R, Rajamani T (2019) Recent advances in dental hard tissue remineralization: a review of literature. Int J Clin Pediatr Dent 12:139–144. https://doi.org/10.5005/jp-journals-10005-1603

    Article  PubMed  PubMed Central  Google Scholar 

  3. Noushad M, Ab Rahman I, Husein A, Mohamad D (2016) Nanohybrid dental composite using silica from biomass waste. Powder Technol 299:19–25. https://doi.org/10.1016/j.powtec.2016.05.035

    Article  CAS  Google Scholar 

  4. Hsissou R, Seghiri R, Benzekri Z et al (2021) Polymer composite materials: a comprehensive review. Compos Struct 262:113640. https://doi.org/10.1016/j.compstruct.2021.113640

    Article  CAS  Google Scholar 

  5. Tian M, Gao Y, Liu Y et al (2008) Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent Mater 24:235–243. https://doi.org/10.1016/j.dental.2007.05.002

    Article  CAS  PubMed  Google Scholar 

  6. da Silva AO, Fiorin L, Faria ACL et al (2022) Translucency and mechanical behavior of partially stabilized monolithic zirconia after staining, finishing procedures and artificial aging. Sci Rep 12:16094. https://doi.org/10.1038/s41598-022-20120-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Najafi H, Akbari B, Najafi F et al (2018) Characterization of the physical–mechanical properties of dental resin composites reinforced with novel micro-nano hybrid silica particles: an optimization study. J Macromol Sci Part A Pure Appl Chem 55:736–746. https://doi.org/10.1080/10601325.2018.1526040

    Article  CAS  Google Scholar 

  8. Gbadebo O, Ajayi D, Dosumu Oyekunle O, Shaba P (2014) Randomized clinical study comparing metallic and glass fiber post in restoration of endodontically treated teeth. Indian J Dent Res 25:58. https://doi.org/10.4103/0970-9290.131126

    Article  PubMed  Google Scholar 

  9. Fielding GA, Bandyopadhyay A, Bose S (2012) Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent Mater 28:113–122. https://doi.org/10.1016/j.dental.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  10. Samuel SP, Li S, Mukherjee I et al (2009) Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater 25:296–301. https://doi.org/10.1016/j.dental.2008.07.012

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Zhu M, Li Y et al (2011) Mechanical properties of dental resin composites by co-filling diatomite and nanosized silica particles. Mater Sci Eng, C 31:600–605. https://doi.org/10.1016/j.msec.2010.11.023

    Article  CAS  Google Scholar 

  12. Zandinejad AA, Atai M, Pahlevan A (2006) The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dent Mater 22:382–387. https://doi.org/10.1016/j.dental.2005.04.027

    Article  CAS  PubMed  Google Scholar 

  13. Yadav R, Meena A (2022) Mechanical and two-body wear characterization of micro-nano ceramic particulate reinforced dental restorative composite materials. Polym Compos 43:467–482. https://doi.org/10.1002/pc.26391

    Article  CAS  Google Scholar 

  14. Yang F, Zhao H, Wang W et al (2021) Atomic origins of the strong metal-support interaction in silica supported catalysts. Chem Sci 12:12651–12660. https://doi.org/10.1039/d1sc03480d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kourtis SG (1997) Bond strengths of resin-to-metal bonding systems. J Prosthet Dent 78:136–145. https://doi.org/10.1016/S0022-3913(97)70117-3

  16. Surya Raghavendra S, Jadhav GR, Gathani KM, Kotadia P (2017) Bioceramics in endodontics – a review. J Istanb Univ Fac Dent 51:S128–S137. https://doi.org/10.17096/jiufd.63659

    Article  CAS  Google Scholar 

  17. Yadav R, Kumar M (2019) Dental restorative composite materials: a review. J Oral Biosci 61(2):78–83. https://doi.org/10.1016/j.job.2019.04.001

    Article  PubMed  Google Scholar 

  18. Yadav R (2022) Fabrication, characterization, and optimization selection of ceramic particulate reinforced dental restorative composite materials. Polym Polym Compos 30. https://doi.org/10.1177/09673911211062755

  19. Saini S, Meena A (2020) Enhancement of thermal conductivity of liquid by dispersing ultrafine particles of fly ash. Int J Technical Res Sci Special:7–15. https://doi.org/10.30780/specialissue-icrdet-2019/002

  20. Yadav R (2021) Analytic hierarchy process-technique for order preference by similarity to ideal solution: a multi criteria decision-making technique to select the best dental restorative composite materials. Polym Compos 42(12):6867–6877. https://doi.org/10.1002/pc.26346

    Article  CAS  Google Scholar 

  21. Müller JA, Rohr N, Fischer J (2017) Evaluation of ISO 4049: water sorption and water solubility of resin cements. Eur J Oral Sci 125:141–150. https://doi.org/10.1111/eos.12339

    Article  CAS  PubMed  Google Scholar 

  22. Meena A, Mali HS, Patnaik A, Kumar SR (2018) Effect of adding nanoalumina and marble dust powder on the physical, mechanical, and thermo-mechanical characterization of dental composite. Polym Compos 39:E321–E331. https://doi.org/10.1002/pc.24131

    Article  CAS  Google Scholar 

  23. Yadav R, Lee HH (2022) Ranking and selection of dental restorative composite materials using FAHP-FTOPSIS technique: an application of multi criteria decision making technique. J Mech Behav Biomed Mater 132:105298. https://doi.org/10.1016/j.jmbbm.2022.105298

    Article  CAS  PubMed  Google Scholar 

  24. Geier N, Pereszlai C (2019) Analysis of characteristics of surface roughness of machined CFRP composites. Period Polytech Mech Eng 64:67–80. https://doi.org/10.3311/PPme.14436

    Article  Google Scholar 

  25. Moore BK, Platt JA, Borges G et al (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33:408–412. https://doi.org/10.2341/07-104

    Article  PubMed  Google Scholar 

  26. de Camargo EJ, Moreschi E, Baseggio W et al (2009) Composite depth of cure using four polymerization techniques. J Appl Oral Sci 17:446–450. https://doi.org/10.1590/s1678-77572009000500018

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yadav R, Meena A, Patnaik A (2022) Tribological behavior of zinc oxide-hydroxyapatite particulates filled dental restorative composite materials. Polym Compos 43(5):3029–3040. https://doi.org/10.1002/pc.26597

    Article  CAS  Google Scholar 

  28. Meena A, Bisht D, Yadav R et al (2022) Fabrication and characterization of micro alumina zirconia particulate filled dental restorative composite materials. Polym Compos 43:1526–35. https://doi.org/10.1002/pc.26473

    Article  CAS  Google Scholar 

  29. Eliades T, Zinelis S, Kim D-G, Brantley W (2017) Structure/property relationships in orthodontic polymers. In: Orthodontic Applications of Biomaterials. Elsevier, pp 39–59. https://doi.org/10.1016/B978-0-08-100383-1.00002-3

  30. Yadav R, Meena A (2022) Comparative study of thermo-mechanical and thermogravimetric characterization of hybrid dental restorative composite materials. Proc Inst Mech Eng L: J Mater: Des Appl 236:1122–1129. https://doi.org/10.1177/14644207211069763

    Article  CAS  Google Scholar 

  31. Suryawanshi A, Behera N (2023) Prediction of wear of dental composite materials using machine learning algorithms. Comput Methods Biomech Biomed Engin:1–11. https://doi.org/10.1080/10255842.2023.2187671

  32. Yadav R, Meena A (2022) Comparative investigation of tribological behavior of hybrid dental restorative composite materials. Ceram Int 48:6698–6706. https://doi.org/10.1016/j.ceramint.2021.11.220

    Article  CAS  Google Scholar 

  33. Saini S, Meena A, Yadav R, Patnaik A (2023) Investigation of physical, mechanical, thermal, and tribological characterization of tricalcium phosphate and zirconia particulate reinforced dental resin composite materials. Tribol Int 181:108322. https://doi.org/10.1016/j.triboint.2023.108322

    Article  CAS  Google Scholar 

  34. Finlay N, Hahnel S, Dowling AH, Fleming GJP (2013) The in vitro wear behavior of experimental resin-based composites derived from a commercial formulation. Dent Mater 29:365–374. https://doi.org/10.1016/j.dental.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  35. Manivelmuralidaran V, Senthilkumar K (2020) Multi objective optimization of cold crack susceptibility of high strength low alloy steel 950A using grey relational analysis. Mater Today Proc 27:2703–2707. https://doi.org/10.1016/j.matpr.2019.11.326

    Article  CAS  Google Scholar 

  36. Yadav R, Meena A, Patnaik A (2022) Biomaterials for dental restorative composite applications: a comprehensive review of physical, chemical, mechanical, thermal, tribological, and biological properties. Polym Adv Technol 33(6):1762–1781. https://doi.org/10.1002/pat.5648

    Article  CAS  Google Scholar 

  37. Yadav R, Meena A (2022) Effect of aluminium oxide, titanium oxide, hydroxyapatite filled dental restorative composite materials on physico-mechanical properties. Ceram Int 48:20306–20314. https://doi.org/10.1016/j.ceramint.2022.03.311

    Article  CAS  Google Scholar 

  38. Yadav R, Lee HH (2022) Fabrication, characterization, and selection using FAHP-TOPSIS technique of zirconia, titanium oxide, and marble dust powder filled dental restorative composite materials. Polym Adv Technol 33(10):3286–3295. https://doi.org/10.1002/pat.5780

    Article  CAS  Google Scholar 

  39. Ryba TM, Dunn WJ, Murchison DF (2002) Surface roughness of various packable composites. Oper Dent 27:243–247

    PubMed  Google Scholar 

  40. Koran P, Kürschner R (1998) Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion, and degree of polymerization. Am J Dent 11:17–22

    CAS  PubMed  Google Scholar 

  41. Filipov IA, Vladimirov SB (2006) Residual monomer in a composite resin after light-curing with different sources, light intensities and spectra of radiation. Braz Dent J 17:34–38. https://doi.org/10.1590/S0103-64402006000100008

    Article  PubMed  Google Scholar 

  42. Yadav R, Lee H, Lee J et al (2022) A comprehensive review: physical, mechanical, and tribological characterization of dental resin composite materials. Tribol Int 179:108102. https://doi.org/10.1016/j.triboint.2022.108102

    Article  CAS  Google Scholar 

  43. Neves AD, Discacciati JAC, Oréfice RL, Jansen WC (2002) Correlação entre grau de conversão, microdureza e conteúdo inorgânico em compósitos. Pesqui Odontol Bras 16:349–354. https://doi.org/10.1590/S1517-74912002000400012

    Article  PubMed  Google Scholar 

  44. El-Nawawy M, Koraitim L, Abouelatta O, Hegazi H (2013) Depth of cure and microhardness of nanofilled, packable and hybrid dental composite resins. Am J Biomed Eng 2:241–250. https://doi.org/10.5923/j.ajbe.20120206.03

    Article  Google Scholar 

  45. Tripp CP, Hair ML (1991) Reaction of chloromethylsilanes with silica: a low-frequency infrared study. Langmuir 7:923–927. https://doi.org/10.1021/la00053a019

    Article  CAS  Google Scholar 

  46. Ghavami-Lahiji M, Firouzmanesh M, Bagheri H et al (2018) The effect of thermocycling on the degree of conversion and mechanical properties of a microhybrid dental resin composite. Restor Dent Endod 43:e26. https://doi.org/10.5395/rde.2018.43.e26

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meena A, Mali HS, Patnaik A, Kumar SR (2019) Investigation of wear behavior of nanoalumina and marble dust-reinforced dental composites. Sci Eng Compos Mater 26:84–96. https://doi.org/10.1515/secm-2017-0152

    Article  CAS  Google Scholar 

  48. Pratap B, Nag M, Yadav R et al (2023) Dynamic mechanical analysis of zinc oxide and hydroxyapatite particulate filled dental restorative composite materials. In: AIP Conference Proceedings (Vol. 2782, No. 1). https://doi.org/10.1063/5.0154476

  49. Rodríguez HA, Casanova H (2018) Effects of silica nanoparticles and silica-zirconia nanoclusters on tribological properties of dental resin composites. J Nanotechnol 2018:7589051. https://doi.org/10.1155/2018/7589051

    Article  CAS  Google Scholar 

  50. Yadav R, Kumar M (2020) Investigation of the physical, mechanical and thermal properties of nano and microsized particulate-filled dental composite material. J Compos Mater 54:2623–2633. https://doi.org/10.1177/0021998320902212

    Article  CAS  Google Scholar 

  51. Yadav R, Lee H, Meena A et al (2022) Effect of alumina particulate and E-glass fiber reinforced epoxy composite on erosion wear behavior using Taguchi orthogonal array. Tribol Int 175:107860. https://doi.org/10.1016/j.triboint.2022.107860

    Article  CAS  Google Scholar 

  52. Fonseca ASQS, Labruna Moreira AD, de Albuquerque PPAC et al (2017) Effect of monomer type on the C-C degree of conversion, water sorption and solubility, and color stability of model dental composites. Dent Mater 33:394–401. https://doi.org/10.1016/j.dental.2017.01.010

    Article  CAS  PubMed  Google Scholar 

  53. Marghalani HY (2010) Effect of finishing/polishing systems on the surface roughness of novel posterior composites. J Esthet Restor Dent 22:127–138. https://doi.org/10.1111/j.1708-8240.2010.00324.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their heartfelt gratitude to the Centre of Excellence in Material Engineering at Anand I.C.E., Jaipur, and the Materials Research Center (MRC) at MNIT Jaipur for their invaluable support and guidance during the experimental work on dental composites.

Author information

Authors and Affiliations

Authors

Contributions

Sonu Saini: Writing—original draft. Anoj Meena: Writing – review & editing, supervision. Ramkumar Yadav: Writing – review & editing, supervision. Amar Patnaik: review & editing, supervision.

Corresponding authors

Correspondence to Anoj Meena or Ramkumar Yadav.

Ethics declarations

Ethics Approval

The research adheres to ethical guidelines, and all necessary approvals were obtained from relevant institutional review boards before conducting the study.

Consent to Participate

Informed consent was obtained from all human participants, ensuring their voluntary participation with a clear understanding of the research objectives and potential risks.

Consent for Publication

Consent for publication has been obtained from all identifiable individuals whose personal data are included in this manuscript.

Competing Interests

The authors declare no competing interests that could influence the interpretation of the research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, S., Meena, A., Yadav, R. et al. Fabrication, Evaluation, and Performance Ranking of Tri-calcium Phosphate and Silica Reinforced Dental Resin Composite Materials. Silicon 15, 8045–8063 (2023). https://doi.org/10.1007/s12633-023-02646-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02646-6

Keywords

Navigation