Skip to main content
Log in

Investigation of Possible Mechanisms of CO2 Reduction Reaction on Ni Doped Carbon Nanocage and Ni Doped Silicon Nanocage as Effective Catalysts

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Here, the possible mechanisms for CO2 reduction reaction to produce the CO, CH4, HCOOH, HCHO and CH3OH species on surfaces of carbon and silicon Fullerenes (C50 and Si50) as catalysts are studied by theoretical and computational models. The calculated overpotential of CO2 reduction reaction on Ni-C50 and Ni-Si50 Fullerenes are lower than corresponding values on various metal catalysts, significantly. Results shown that rate limiting step for CH4 production on Ni-C50 and Ni-Si50 Fullerenes is the Fullerene-*CO → Fullerene-*CHO. Results indicated that the Ni-Si50 Fullerene has more negative ΔGreaction values than Ni-C50 Fullerenes to CH4 production, significantly. The calculated overpotential for CH4 and CH3OH production are lower than HCOOH and HCHO creation on Ni-C50 and Ni-Si50 Fullerenes. The Ni-C50 and Ni-Si50 Fullerenes can catalyze the processes of CO2 reduction reaction through possible mechanisms by theoretical and computational models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Banerjee S, Zhang Z-Q, Hall AS, Thoi VS (2020) ACS Catal 10:9907–9914

    Article  CAS  Google Scholar 

  2. Ma DW, Wang Q, Yan X, Zhou D, Tang Y, Lu Z, Yang Z (2016) Carbon 105:463–473

    Article  CAS  Google Scholar 

  3. Mahmood J, Jung S-M, Kim S-J, Park J, Yoo J-W (2015) Chem Mater 27:4860–4864

    Article  CAS  Google Scholar 

  4. Singh MR, Weber AZ, Head-Gordon M, Bell AT (2017) Natl Acad Sci 114:8812–8821

    Article  Google Scholar 

  5. Ju W, Bagger A, Wang X, Tsai Y (2019) ACS Energy Lett 4:1663–1671

    Article  CAS  Google Scholar 

  6. Peterson AA, Nørskov JK (2012) J Phys Chem Lett 3:251–258

    Article  CAS  Google Scholar 

  7. Hussain J, Jónsson H, Skúlason E (2018) ACS Catal 8:5240–5249

    Article  CAS  Google Scholar 

  8. Chen H, Handoko AD, Xiao J (2019) ACS Appl Mater Interfaces 11:36571–36579

    Article  PubMed  CAS  Google Scholar 

  9. Li T, Yang C, Luo J-L, Zheng G (2019) ACS Catal 9:10440–10447

    Article  CAS  Google Scholar 

  10. Ren S, Jouli D, Sare D, Wang M, Robert M, Berling CP (2019) Science 365:367–369

    Article  PubMed  CAS  Google Scholar 

  11. Wang X-Z, Liu S, Liu Q, Luo J-L (2019) Electrochem Commun 107:106531

    Article  CAS  Google Scholar 

  12. Vedharathinam V, Qi Z, Biener M (2019) ACS Catal 9:10605–10611

    Article  CAS  Google Scholar 

  13. Kroto HW, Heath JR, Brien SCO, Curl RF, Smalley RE (1985) Nature 318:162–163

    Article  CAS  Google Scholar 

  14. Smalley RE (1997) Rev Mod Phys 69:723–730

    Article  CAS  Google Scholar 

  15. Popov AA, Yang S, Dunsch L (2013) Chem Rev 113:5989–6113

    Article  PubMed  CAS  Google Scholar 

  16. Tang Q, Maji S, Jiang BH, Sun J, Zhao WL (2019) ACS Nano 13:14005–14012

    Article  PubMed  CAS  Google Scholar 

  17. Miyazawa K (2002) J Meter Res 17:83–88

    Article  CAS  Google Scholar 

  18. Wakahara T, Nemoto Y, Xu M (2010) Carbon 48:3359–3363

    Article  CAS  Google Scholar 

  19. Wood KN, Hayre RO, Pylypenko S (2014) Energy Environ Sci 7:1212–1249

    Article  CAS  Google Scholar 

  20. Yang M, Zhen Z (2017) Adv Sci 4:1600408

    Article  Google Scholar 

  21. Shrestha LK, Shrestha RG (2015) Angew Chem Int Ed 54:951–955

    Article  CAS  Google Scholar 

  22. Lei Y, Wang S, Lai Z, Yao X, Zhao Y (2019) Nanoscale 11:8692–8698

    Article  PubMed  CAS  Google Scholar 

  23. Osonoe K, Kano R, Miyazawa KI (2014) J Cryst Growth 401:458–461

    Article  CAS  Google Scholar 

  24. Wang B, Zheng S, Saha A, Bao L (2017) J Am Chem Soc 139:10578–10584

    Article  PubMed  CAS  Google Scholar 

  25. Cui X, An W, Liu X, Wang H, Men Y, Wang J (2018) Nanoscale 10:15262–15272

    Article  PubMed  CAS  Google Scholar 

  26. Ouyang Y, Shi L, Bai X, Li Q, Wang J (2020) Chem Sci 11:1807–1813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li L, Xu L (2020) Chem Commun 56:8960–8963

    Article  CAS  Google Scholar 

  28. Zhang R, Li B, Yang J (2015) Nanoscale 7:14062–14070

    Article  PubMed  CAS  Google Scholar 

  29. Ramirez A et al (2019) ACS Catal 9:6320–6334

    Article  CAS  Google Scholar 

  30. Dokania A et al (2020) J Catal 381:347–354

    Article  CAS  Google Scholar 

  31. Ramirez A et al (2020) Catal Sci Techno l 10:1507–1517

    Article  CAS  Google Scholar 

  32. Wei J et al (2017) Nat Commun 8:15174

    Article  PubMed  PubMed Central  Google Scholar 

  33. Khan MK et al (2020) ACS Catal 10:10325–10338

    Article  CAS  Google Scholar 

  34. Gao P et al (2017) Nat Chem 9:1019–1024

    Article  PubMed  CAS  Google Scholar 

  35. Li Z et al (2019) Joule 3:570–583

    Article  CAS  Google Scholar 

  36. Wang Y et al (2019) ACS Catal 9:895–901

    Article  CAS  Google Scholar 

  37. Ni Y et al (2018) Nat Commun 9:3457

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yarulina I, Chowdhury AD, Meirer F (2018) Nat Catal 1:398–411

    Article  CAS  Google Scholar 

  39. Chowdhury AD et al (2016) Angew Chem Int Ed 55:15840–15845

    Article  CAS  Google Scholar 

  40. Çağlayan M et al (2020) Angew Chem Int Ed 59:16741–16746

    Article  Google Scholar 

  41. Mahmood J (2015) Nat Commun 6:6486

    Article  PubMed  CAS  Google Scholar 

  42. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  44. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  PubMed  CAS  Google Scholar 

  45. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  46. Grimme S, Antony J, Ehrlich S (2010) J Chem Phys 132:154104

    Article  PubMed  Google Scholar 

  47. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  48. Guo C, Wei S, Zhou S, Zhang T, Appl ACS (2017) Mater Interfaces 9:26107–26117

    Article  CAS  Google Scholar 

  49. Yu H, Zhu J, Qiao R, Zhao M, Kong L (2022) ChemistrySelect 7:202103668

    Article  Google Scholar 

  50. Kong L, Liu Y, Dong L, Wang W, You H (2020) Dalton Trans 49:1947–1954

    Article  PubMed  CAS  Google Scholar 

  51. Kong L, Sun H, Nie Y, Yan Y, Wang R, Ding Q, Luan G (2023) Molecules 28:2681. https://doi.org/10.3390/molecules28062681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. He X, Xie S, Xu J, Yin X, Zhang M (2023) Inorg Chem 62:8033–8042

    Article  PubMed  CAS  Google Scholar 

  53. Zhao Z, Shi X, Shen Z, Lu N (2023) Chem Eng J 469:143923

    Article  CAS  Google Scholar 

  54. Zhao W, Suo H, Wang S, Ma L, Zhang ZJ (2022) Europ Ceram Soc 42:7036–7048

    Article  CAS  Google Scholar 

  55. Guo W, Luo H, Jiang Z, Chi J, Lee AF (2013) ACS Catal 12(2022):12000–12001

    Google Scholar 

  56. Xia G, Zheng Y, Sun Z, Yao J (2022) Environ Sci Pollution Res 29:39441–39450

    Article  CAS  Google Scholar 

  57. Wei S, Chen T, Hou H, Xu YJ (2023) Electroanalyt Chem 937:117419

    Article  CAS  Google Scholar 

  58. Liang Y, Li J, Xue Y, Tan T, He Y, Pan YJ (2021) Hazard Mater 420:126584

    Article  CAS  Google Scholar 

  59. Wan Q, Huang C, Hou Z, Jiang H, Wang L (2023) Org Chem Front 10:3585–3590

    Article  CAS  Google Scholar 

  60. Shi J, Zhao Y, Wu Y, Erbe M, Guo C, Jin Z (2023) Appl Sur Sci 612:155820

    Article  CAS  Google Scholar 

  61. Zhang N, Li X, Guo Y, Guo Y, Dai Q (2023) Environ Sci Techno 57:7086–7096

    Article  CAS  Google Scholar 

  62. Tang X, Ye J, Guo L, Pu T, Cheng L, Cao X, Dai S (2023) Adv Mater 35:2208504

    Article  CAS  Google Scholar 

  63. Zheng Y, Liu Y, Guo X, Wang Y, Zhao YJ (2020) Mater Sci Technol 41:117–126

    Article  CAS  Google Scholar 

  64. Yang Q, Jiang Y, Zhuo H, Mitchell EM, Yu Q (2023) Nano Energy 111:108404

    Article  CAS  Google Scholar 

  65. Chen D, Savidge T (2015) Science 349:936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang Z, Dai L, Yao J, Guo T, Tatsiana S, Chen J (2021) Chemosphere 281:130718

    Article  PubMed  CAS  Google Scholar 

  67. Wang Z, Chen C, Savitskaya T, Chen J, Chen J (2020) Sci Total Environ 708:135063

    Article  PubMed  CAS  Google Scholar 

  68. Zhou M, Tang T, Qin D, Chen J, Hu G (2023) Sen Actuators B: Chem 376:132931

    Article  CAS  Google Scholar 

  69. Zhang J, Wang L, Zhong A, Li D, Han D (2019) Dyes Pigm 162:590–598

    Article  CAS  Google Scholar 

  70. Lei Z, Hengliang W, Zhang L, Yang J, Qi W (2023) New J Chem 47:7070–7083

    Article  CAS  Google Scholar 

  71. Song Z, Shao X, Wu W, Liu Z, Yang M, Wang H (2023) Molecules 28:1–10

    Google Scholar 

  72. Zhao C, Xi M, Huo J, He C, Fu L (2022) Chem Lett 34:107213

    Google Scholar 

  73. Ma W (2021) Doctoral dissertation. University of Nevada. https://doi.org/10.34917/25374066

  74. Zhang S, Wang J, Liu H, Tong J, Sun Z (2021) Neural Comput Appl 33:821–835

    Article  Google Scholar 

  75. Ma W (2022) ASME. https://doi.org/10.1115/IMECE2022-94840

    Article  Google Scholar 

  76. Hou M, Li Y, Peng F, Daneshvar-Rouyendegh B (2023) Energy Sources A: Recovery Util Environ Eff 45:3019–3040

    Article  CAS  Google Scholar 

  77. Zhang F, Zhu H, Zhou H, Guo J, Huang B (2017) SPE J 22:632–644

    Article  CAS  Google Scholar 

  78. Gu Y, Zheng G (2023) Processes 11:561

    Article  CAS  Google Scholar 

  79. Zhou H, Zhang H, Yang C, Sun Y (2020) IFAC-PapersOnLine 53:10737–10742

    Article  Google Scholar 

  80. Zhou H, Yang C, Sun Y (2020) IEEE Access 8:177570–177579

    Article  Google Scholar 

  81. Dou Z, Liu Z, Li L, Zhou H, Wang Q (2022) Emerg Manag Sci Technol 2:1–10

    Article  Google Scholar 

  82. Yang B, Yuan MinLan, Yang T, Hao Wu (2022) Oncology Res 30:23–33

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank our University for computational support.

Author information

Authors and Affiliations

Authors

Contributions

XiLan Li: Conceptualization, Methodology, Software, Validation, Jing Wang: Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, XiaoLi Wei: Formal analysis, Investigation Resources.

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wang, J. & Wei, X. Investigation of Possible Mechanisms of CO2 Reduction Reaction on Ni Doped Carbon Nanocage and Ni Doped Silicon Nanocage as Effective Catalysts. Silicon 15, 7639–7646 (2023). https://doi.org/10.1007/s12633-023-02617-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02617-x

Keywords

Navigation