Skip to main content
Log in

Polyphenol-compounds From Green Synthesis of Antimicrobial property of Silver Nanoparticles using Eichhornia crassipes: Characterization and Applications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, the authors aimed to expand a sustainable and gainful methodology for the purpose of synthesizing silver nanoparticles (AgNPs) using polyphenol bioactive compounds extracted from Eichhornia crassipes. The eco-friendliness of this method was also emphasized. The ethanol leaf extract with silver nitrate solution heated and filtered then the AgNPs produced were extensively the samples were thoroughly nanoparticles charaterized using a range of analytical techniques, including UV (nanoparticles wavelength measured), FTIR (functional groups), SEM (morphology, size, range, etc.,), TEM (morphological size of nanoparticles), XRD (crystaline sturcture), EDX (elemental composition), and AFM (irregular shape). In results the characterization process revealed the presence of secondary metabolites, total phenol content (TPC) observed that the highest value of 212.47 ± 7.07 (GAE). Additionally, through GC–MS analysis 12 major bioactive compounds were identified; In UV-Visible spectrum analysized its confirmed that size of nanoparticles in 448 nm absorption of the surface Plasmon resonance band by observed. The dimension of AgNPs was analyzed through SEM was found 11 nm. TEM and SAED analyses revealed the high crystallinity of AgNPs with homogeneous polycrystalline components and lattice spacing at 0.295. XRD patterns displayed four Bragg reflections at 38.45 (111), 46.35 (200), 64.75 (220), and 78.05 (301). Energy synthesis in EDX was observed in 8.79 nm. The AFM analysis the irregular shapes noticed. The synthesized AgNPs tested antimicrobial properties against various strains of microorganisms, including Staphylococcus aureus and Fusarium graminium. The synthesized AgNPs demonstrated potent antimicrobial activity, as evidenced by the highest zones of inhibition observed against Staphylococcus aureus (16.8 ± 0.03 mm) bacteria and Fusarium graminium (12.01 ± 0.01 mm) fungi at a concentration of 80 µg/mL. Our findings concluded that polyphenolic compounds are mostily in high amount reported in fresh fruits and vegetables so for that its having biological properties, same polyphenolic compounds we identified from leaf ethanolic extract of E. crassipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data was used for the research described in the article.

References

  1. Kumari K, Bauddh K (2023) Chapter 18 - Phytoremediation of inorganic contaminants from the aquatic ecosystem using Eichhornia crassipes. In: Shukla SK, Kumar S, Madhav S, Mishra PK (eds) Metals in Water. Elsevier, pp 353–368. https://doi.org/10.1016/B978-0-323-95919-3.00001-X

  2. Nguyen DTC, Van Tran T, Nguyen TTT, Nguyen DH, Alhassan M, Lee T (2022) New frontiers of invasive plants for biosynthesis of nanoparticles towards biomedical applications: A review. Science of The Total Environment:159278

  3. Soto KM, López-Romero JM, Mendoza S, Peza-Ledesma C, Rivera-Muñoz EM, Velazquez-Castillo RR, Pineda-Piñón J, Méndez-Lozano N, Manzano-Ramírez A (2023) Rapid and facile synthesis of gold nanoparticles with two Mexican medicinal plants and a comparison with traditional chemical synthesis. Mater Chem Phys 295:127109. https://doi.org/10.1016/j.matchemphys.2022.127109

    Article  CAS  Google Scholar 

  4. Murphy JW, Guentzel JL (2023) Total mercury and methylmercury concentrations in water hyacinth (Eichhornia crassipes) from a South Carolina coastal plain river. Aquatic Botany 184:103597. https://doi.org/10.1016/j.aquabot.2022.103597

    Article  Google Scholar 

  5. Das RK, Pachapur VL, Lonappan L, Naghdi M, Pulicharla R, Maiti S, Cledon M, Dalila LMA, Sarma SJ, Brar SK (2017) Biological synthesis of metallic nanoparticles: plants, animals and microbial aspects. Nanotechnol Environ Eng 2(1):18. https://doi.org/10.1007/s41204-017-0029-4

    Article  CAS  Google Scholar 

  6. Usui H, Shimizu Y, Sasaki T, Koshizaki N (2005) Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions. J Phys Chem B 109(1):120–124. https://doi.org/10.1021/jp046747j

    Article  PubMed  CAS  Google Scholar 

  7. Yan J, Abdelgawad AM, El-Naggar ME, Rojas OJ (2016) Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose. Carbohyd Polym 147:500–508. https://doi.org/10.1016/j.carbpol.2016.03.029

    Article  CAS  Google Scholar 

  8. Fozia F, Ahmad N, Buoharee ZA, Ahmad I, Aslam M, Wahab A, Ullah R, Ahmad S, Alotaibi A, Tariq A (2022) Characterization and Evaluation of Antimicrobial Potential of Trigonella incise (Linn) Mediated Biosynthesized Silver Nanoparticles. Molecules 27(14):4618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rezazadeh NH, Buazar F, Matroodi S (2020) Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalized silver nanoparticles. Sci Rep 10(1):1–13

    Article  Google Scholar 

  10. Galdopórpora JM, Ibar A, Tuttolomondo MV, Desimone MF (2021) Dual-effect core–shell polyphenol coated silver nanoparticles for tissue engineering. Nano-Struct Nano-Objects 26:100716. https://doi.org/10.1016/j.nanoso.2021.100716

    Article  CAS  Google Scholar 

  11. Pandian A, Semwal D, Semwal R, Malaiyandi M, Sivaraj C, Vijayakumar S (2017) Total Phenolic Content, Volatile Constituents and Antioxidative Effect of Coriandrum sativum, Murraya koenigii and Mentha arvensis. Nat Prod J 7:65–74. https://doi.org/10.2174/2210315506666161121104251

    Article  CAS  Google Scholar 

  12. Khane Y, Benouis K, Albukhaty S, Sulaiman GM, Abomughaid MM, Al Ali A, Aouf D, Fenniche F, Khane S, Chaibi W (2022) Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 12(12):2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Naseem K, Zia Ur Rehman M, Ahmad A, Dubal D, AlGarni TS (2020) Plant extract induced biogenic preparation of silver nanoparticles and their potential as catalyst for degradation of toxic dyes. Coatings 10(12):1235

    Article  CAS  Google Scholar 

  14. Asgary V, Shoari A, Baghbani-Arani F, Shandiz SAS, Khosravy MS, Janani A, Bigdeli R, Bashar R, Cohan RA (2016) Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. Int J Nanomed 11:3597

    Article  CAS  Google Scholar 

  15. Shah M, Nawaz S, Jan H, Uddin N, Ali A, Anjum S, Giglioli-Guivarc’h N, Hano C, Abbasi BH (2020) Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Mater Sci Eng C, Mater Biol Appl 112:110889. https://doi.org/10.1016/j.msec.2020.110889

    Article  PubMed  CAS  Google Scholar 

  16. Sumra AA, Zain M, Saleem T, Yasin G, Azhar MF, Zaman QU, Budhram-Mahadeo V, Ali HM (2023) Biogenic Synthesis, Characterization, and In Vitro Biological Evaluation of Silver Nanoparticles Using Cleome brachycarpa. Plants 12(7):1578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Nagarajan S, Arjun P, Raaman N, Shah A, Sobhia ME, Das TM (2012) Stereoselective synthesis of sugar-based β-lactam derivatives: docking studies and its biological evaluation. Tetrahedron 68(14):3037–3045. https://doi.org/10.1016/j.tet.2012.02.017

    Article  CAS  Google Scholar 

  18. Periasamy S, Jegadeesan U, Sundaramoorthi K, Rajeswari T, Tokala VNB, Bhattacharya S, Muthusamy S, Sankoh M, Nellore MK (2022) Comparative Analysis of Synthesis and Characterization of Silver Nanoparticles Extracted Using Leaf, Flower, and Bark of Hibiscus rosasinensis and Examine Its Antimicrobicidal Activity. J Nanomater 2022:1–10

    Article  Google Scholar 

  19. Ali SG, Ansari MA, Alzohairy MA, Alomary MN, Jalal M, AlYahya S, Asiri SMM, Khan HM (2020) Effect of biosynthesized ZnO nanoparticles on multi-drug resistant Pseudomonas aeruginosa. Antibiotics 9(5):260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Al-Humaid A, Mousa H, El-Mergawi R, Abdel-Salam A (2010) Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. Am J Food Technol 5(1):22–30

    Article  CAS  Google Scholar 

  21. Méndez-Loranca E, Vidal-Ruiz AM, Martínez-González O, Huerta-Aguilar CA, Gutierrez-Uribe JA (2023) Beyond cellulose extraction: Recovery of phytochemicals and contaminants to revalorize agricultural waste. Biores Technol Rep 21:101339. https://doi.org/10.1016/j.biteb.2023.101339

    Article  CAS  Google Scholar 

  22. Tunnisa F, Nur Faridah D, Afriyanti A, Rosalina D, Ana Syabana M, Darmawan N, Dewi Yuliana N (2022) Antioxidant and antidiabetic compounds identification in several Indonesian underutilized Zingiberaceae spices using SPME-GC/MS-based volatilomics and in silico methods. Food Chemistry: X 14:100285. https://doi.org/10.1016/j.fochx.2022.100285

    Article  PubMed  CAS  Google Scholar 

  23. Rashed MMA, Mahdi AA, Ghaleb ADS, Zhang FR, YongHua D, Qin W, WanHai Z (2020) Synergistic effects of amorphous OSA-modified starch, unsaturated lipid-carrier, and sonocavitation treatment in fabricating of Lavandula angustifolia essential oil nanoparticles. Int J Biol Macromol 151:702–712. https://doi.org/10.1016/j.ijbiomac.2020.02.224

    Article  PubMed  CAS  Google Scholar 

  24. Dubois LM, Perrault KA, Stefanuto P-H, Koschinski S, Edwards M, McGregor L, Focant J-F (2017) Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood. J Chromatogr A 1501:117–127. https://doi.org/10.1016/j.chroma.2017.04.026

    Article  PubMed  CAS  Google Scholar 

  25. Delaney P, Sarvothaman VP, Colgan R, Nagarajan S, Deshmukh G, Rooney D, Robertson PKJ, Ranade VV (2022) Removal of single and dual ring thiophene’s from dodecane using cavitation based processes. Ultrasonics Sonochemistry 89:106148. https://doi.org/10.1016/j.ultsonch.2022.106148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xiao N, Xu H, Jiang X, Sun T, Luo Y, Shi W (2022) Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis. Food Res Int 158:111584. https://doi.org/10.1016/j.foodres.2022.111584

    Article  PubMed  CAS  Google Scholar 

  27. Su H, Kuang X, Ren Y, Luo L (2022) Biostimulants promote biodegradation of n-hexadecane by Raoultella planticola: Generation of lipopeptide biosurfactants. J Environ Chem Eng 10(5):108382. https://doi.org/10.1016/j.jece.2022.108382

    Article  CAS  Google Scholar 

  28. Chen X, Cao J, Geng A, Zhang X, Wang H, Chu Q, Yan Z, Zhang Y, Liu H, Zhang J (2023) Integration of GC-MS and LC-MS for metabolite characteristics of thigh meat between fast- and slow-growing broilers at marketable age. Food Chemistry 403:134362. https://doi.org/10.1016/j.foodchem.2022.134362

    Article  PubMed  CAS  Google Scholar 

  29. Xu L, Cheng H, Müller M, Sinclair AJ, Wang W, Guo X, Vetter W, Wang Y (2023) Targeted quantitation of furan fatty acids in edible oils by gas chromatography/triple quadrupole tandem mass spectrometry (GC-TQ/MS). Food Chemistry 404:134521. https://doi.org/10.1016/j.foodchem.2022.134521

    Article  PubMed  CAS  Google Scholar 

  30. Li Y, Cao Z, Yu Z, Zhu Y, Zhao K (2023) Effect of inoculating mixed starter cultures of Lactobacillus and Staphylococcus on bacterial communities and volatile flavor in fermented sausages. Food Sci Human Wellness 12(1):200–211. https://doi.org/10.1016/j.fshw.2022.07.010

    Article  CAS  Google Scholar 

  31. Azhagu Madhavan S, Sa V, Ra S, Sb R (2021) Phytochemical Screening and GC–MS Analysis Of Bioactive Compounds Present In Ethanolic Leaf Extract Murraya koenigii. Bull Env Pharmacol Life Sci 10:158–164

    Google Scholar 

  32. Madhavan SA, Vinotha P, Uma V (2020) Phytochemical screening and comparative gc–ms analysis of bioactive compounds present in methanolic leaf and latex extract Calotropis gigantea (L). Asian Journal of Advances in Medical Science:1–13

  33. Shanab SM, Shalaby EA, Lightfoot DA, El-Shemy HA (2010) Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS ONE 5(10):e13200

    Article  PubMed  PubMed Central  Google Scholar 

  34. De Laet C, Matringe T, Petit E, Grison C (2019) Eichhornia crassipes: a Powerful Bio-indicator for Water Pollution by Emerging Pollutants. Sci Rep 9(1):7326. https://doi.org/10.1038/s41598-019-43769-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tian Y, Xu Z, Liu Z, Zhu R, Zhang F, Liu Z, Si X (2022) Botanical discrimination and classification of Mentha plants applying two-chiral column tandem GC-MS analysis of eight menthol enantiomers. Food Research International:112035. https://doi.org/10.1016/j.foodres.2022.112035

  36. Taleghani A (2022) New bioactive compounds characterized by liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry in hydro-methanol and petroleum ether extracts of Prosopis farcta (Banks & Sol) JF Macbr weed. J Mass Spectrometry: JMS 57(9):e4884–e4884

    Article  PubMed  Google Scholar 

  37. Ganji SM, Singh H, Friedman M (2019) Phenolic content and antioxidant activity of extracts of 12 melon (Cucumis melo) peel powders prepared from commercial melons. J Food Sci 84(7):1943–1948

    Article  PubMed  CAS  Google Scholar 

  38. Abdo MM, Abdel-Hamid MI, El-Sherbiny IM, El-Sherbeny G, Abdel-Aal EI (2023) Green synthesis of AgNPs, alginate microbeads and Chlorella minutissima laden alginate microbeads for tertiary treatment of municipal wastewater. Biores Technol Rep 21:101300. https://doi.org/10.1016/j.biteb.2022.101300

    Article  CAS  Google Scholar 

  39. Henglein A (1993) Physicochemical properties of small metal particles in solution:" microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem 97(21):5457–5471

    Article  CAS  Google Scholar 

  40. Alzubaidi AK, Al-Kaabi WJ, Ali AA, Albukhaty S, Al-Karagoly H, Sulaiman GM, Asiri M, Khane Y (2023) Green Synthesis and Characterization of Silver Nanoparticles Using Flaxseed Extract and Evaluation of Their Antibacterial and Antioxidant Activities. Appl Sci 13(4):2182

    Article  CAS  Google Scholar 

  41. Kumar D, Kumar G, Das R, Agrawal V (2018) Strong larvicidal potential of silver nanoparticles (AgNPs) synthesized using Holarrhena antidysenterica (L.) Wall. bark extract against malarial vector, Anopheles stephensi Liston. Process Safety and Environmental Protection 116. https://doi.org/10.1016/j.psep.2018.02.001

  42. He Y, Wei F, Ma Z, Zhang H, Yang Q, Yao B, Huang Z, Li J, Zeng C, Zhang Q (2017) Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv 7:39842–39851. https://doi.org/10.1039/C7RA05286C

    Article  CAS  Google Scholar 

  43. Qais F, Shafiq A, Khan H, Husain F, Khan RA, Alenazi B, Alsalme A, Ahmad I (2019) Antibacterial Effect of Silver Nanoparticles Synthesized Using Murraya koenigii (L.) against Multidrug-Resistant Pathogens. Bioinorg Chem Appl 2019:1–11. https://doi.org/10.1155/2019/4649506

    Article  CAS  Google Scholar 

  44. Sabapathi N, Ramalingam S, Aruljothi KN, Lee J, Barathi S (2023) Characterization and Therapeutic Applications of Biosynthesized Silver Nanoparticles Using Cassia auriculate Flower Extract. Plants 12(4):707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mickymaray S (2019) One-step Synthesis of Silver Nanoparticles Using Saudi Arabian Desert Seasonal Plant Sisymbrium irio and Antibacterial Activity Against Multidrug-Resistant Bacterial Strains. Biomolecules 9:662. https://doi.org/10.3390/biom9110662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:60–60

    Article  Google Scholar 

  47. Zhang D, Wang C, Shen L, Shin H-C, Lee KB, Ji B (2018) Comparative analysis of oxidative mechanisms of phloroglucinol and dieckol by electrochemical, spectroscopic, cellular and computational methods. RSC Adv 8(4):1963–1972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Prabu HJ, Johnson I (2015) Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Modern Sci 1(4):237–246

    Article  Google Scholar 

  49. Chakravarty P, Sarma NS, Sarma H (2010) Removal of lead (II) from aqueous solution using heartwood of Areca catechu powder. Desalination 256(1–3):16–21

    Article  CAS  Google Scholar 

  50. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C-P (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf, A 444:226–231

    Article  CAS  Google Scholar 

  51. Saligedo TS, Muleta GG, Tsega TW, Tadele KT (2023) Green Synthesis of Copper Oxide Nanoparticles Using Eichhornia Crassipes Leaf Extract, its Antibacterial and Photocatalytic Activities. Curr Nanomater 8(1):58–68

    Article  CAS  Google Scholar 

  52. Deeksha B, Sadanand V, Hariram N, Rajulu AV (2021) Preparation and Properties of Cellulose Nanocomposite Fabrics with in situ Generated Silver Nanoparticles by Bioreduction Method. J Biores Bioprod 6(1):75. https://doi.org/10.1016/j.jobab.2021.01.003

    Article  CAS  Google Scholar 

  53. Bhutto AA, Kalay Ş, Sherazi STH, Culha M (2018) Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta 189:174–181. https://doi.org/10.1016/j.talanta.2018.06.080

    Article  PubMed  CAS  Google Scholar 

  54. Clichici S, David L, Moldovan B, Baldea I, Olteanu D, Filip M, Nagy A, Luca V, Crivii C, Mircea P, Katona G, Filip GA (2020) Hepatoprotective effects of silymarin coated gold nanoparticles in experimental cholestasis. Mater Sci Eng: C 115:111117. https://doi.org/10.1016/j.msec.2020.111117

    Article  CAS  Google Scholar 

  55. Chinnathambi A, Alharbi SA, Joshi DVS, Jhanani GK, On-uma R, Jutamas K, Anupong W (2023) Synthesis of AgNPs from leaf extract of Naringi crenulata and evaluation of its antibacterial activity against multidrug resistant bacteria. Environ Res 216:114455. https://doi.org/10.1016/j.envres.2022.114455

    Article  PubMed  CAS  Google Scholar 

  56. Rajkumar G, Sundar R (2022) Biogenic one-step synthesis of silver nanoparticles (AgNPs) using an aqueous extract of Persea americana seed: Characterization, phytochemical screening, antibacterial, antifungal and antioxidant activities. Inorganic Chem Commu 143:109817. https://doi.org/10.1016/j.inoche.2022.109817

    Article  CAS  Google Scholar 

  57. Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta Part A Mol Biomol Spectrosc 79(1):254–262. https://doi.org/10.1016/j.saa.2011.02.051

    Article  CAS  Google Scholar 

  58. Katta VKM, Dubey RS (2021) Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater Today: Proceed 45:794–798. https://doi.org/10.1016/j.matpr.2020.02.809

    Article  CAS  Google Scholar 

  59. Kumar R, Arora N, Gupta M, Katyal P (2022) An experimental approach on characterization techniques of zinc oxide nanoparticles. Mater Today: Proceed 56:2469–2477. https://doi.org/10.1016/j.matpr.2021.08.239

    Article  CAS  Google Scholar 

  60. Amutha K, Grace Annapoorani S, Sudhapriya N (2020) Dyeing of textiles with natural dyes extracted from Terminalia arjuna and Thespesia populnea fruits. Industrial Crops Prod 148:112303. https://doi.org/10.1016/j.indcrop.2020.112303

    Article  CAS  Google Scholar 

  61. Xue H, Wang X, Xu Q, Dhaouadi F, Sellaoui L, Seliem MK, Lamine AB, Belmabrouk H, Bajahzar A, Bonilla-Petriciolet A (2022) Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis. Chem Eng J 430:132801

    Article  CAS  Google Scholar 

  62. Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 12(23):3157–3177

    Article  Google Scholar 

  63. Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J Photochem Photobiol, B 132:45–55

    Article  PubMed  CAS  Google Scholar 

  64. Feng QL, Wu J, Chen GQ, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  PubMed  CAS  Google Scholar 

  65. Periasamy S, Jegadeesan U, Sundaramoorthi K, Rajeswari T, Tokala VNB, Bhattacharya S, Muthusamy S, Sankoh M, Nellore MK (2022) Comparative Analysis of Synthesis and Characterization of Silver Nanoparticles Extracted Using Leaf, Flower, and Bark of Hibiscus rosasinensis and Examine Its Antimicrobicidal Activity. J Nanomater 2022:8123854. https://doi.org/10.1155/2022/8123854

    Article  CAS  Google Scholar 

  66. Nayak D, Ashe S, Rauta PR, Nayak B (2015) Biosynthesis, characterisation and antimicrobial activity of silver nanoparticles using Hibiscus rosa-sinensis petals extracts. IET Nanobiotechnol 9(5):288–293. https://doi.org/10.1049/iet-nbt.2014.0047

    Article  PubMed  Google Scholar 

  67. Sridhara V, Pratima K, Krishnamurthy G, Sreekanth B (2013) Vegetable assisted synthesis of silver nanoparticles and its antibacterial activity against two human pathogens.

  68. Pallavi S, Rudayni HA, Bepari A, Niazi SK, Nayaka S (2022) Green synthesis of Silver nanoparticles using Streptomyces hirsutus strain SNPGA-8 and their characterization, antimicrobial activity, and anticancer activity against human lung carcinoma cell line A549. Saudi J Biol Sci 29(1):228–238

    Article  Google Scholar 

  69. Singh A, Dar MY, Joshi B, Sharma B, Shrivastava S, Shukla S (2018) Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicol Rep 5:333–342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The mentioned statement indicates that the work is supported by the Department of Community Medicine at Saveetha Institute of Medical And Technical Sciences (SIMATS) in Chennai, Tamil Nadu, India.

Funding

The authors express their gratitude to the Department of Biotechnology, New Delhi, India (Grant Number: BT/PR29159/FCB/125/9/2018) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Azhagu Madhavan Sivalingam:- Work Designed, Writing –Original Draft, Writing-Review & Editing, Grammar Checking, Visualization, Methodology, Formal analysis and Investigation. Arjun Pandian:- Editing, Formal analysis, Methodology, Visualization. Sumathy Rengarajan:- Formal analysis and methodology. Raju Ramasubbu:- Funding sources and formal analysis. All the authors give final approval of the version to be submitted.

Corresponding author

Correspondence to Azhagu Madhavan Sivalingam.

Ethics declarations

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivalingam, A.M., Pandian, A., Rengarajan, S. et al. Polyphenol-compounds From Green Synthesis of Antimicrobial property of Silver Nanoparticles using Eichhornia crassipes: Characterization and Applications. Silicon 15, 7415–7429 (2023). https://doi.org/10.1007/s12633-023-02593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02593-2

Keywords

Navigation