Skip to main content
Log in

Potential of Silicon and Carbon Nanocages (C38, F-C38, Cl-C38, Si38, F-Si38, Cl-Si38) as Anode Materials in Li-ion Battery and Mg-ion Battery

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The ability and capacity of silicon and carbon nanocages (C38, F-C38, Cl-C38, Si38, F-Si38, Cl-Si38) as anodes of batteries are investigated to suggest the new nano-compounds as basic material of electrodes of batteries with suitable performance. The electrochemical parameters of C and Si nanocages as anodes of batteries are examined and compared by using of the computational models. The halogen (F and Cl) atoms are linked to Si38 and C38 as anodes in batteries to improve their capacity by theoretical models. The interaction energies of nanostructures with F and Cl atoms, interaction energies of nanostructures with Li and Mg and interaction energies of F-nanostructures and Cl-nanostructures with Li+ and Mg+2 ions are calculated by theoretical models. Finally, the F-Si38 and Cl-Si38 nanocages are suggested as suitable effective nano structures to utilize as electrodes in batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Ye X, Zhang J (2023) ACS Sustain Chem Eng 11:7012–7020

    Article  CAS  Google Scholar 

  2. Gao Y, Chen X, Zhao X (2023) Energy Fuels 37:6177–6185

    Article  CAS  Google Scholar 

  3. Larbi L, Wernert R (2023) ACS Appl Mater Interfaces 15:18992–19001

    Article  PubMed  CAS  Google Scholar 

  4. Chen G, Chen J (2023) ACS Appl Mater Interfaces 15:16664–16672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen X-L, Xie Mo (2023) J Am Chem Soc 145:5105–5113

    Article  PubMed  CAS  Google Scholar 

  6. Bai Y-L, Liu Y-S, Yan T, Feng R (2023) ACS Applied Nano Materials 6:3020–3026

    Article  CAS  Google Scholar 

  7. Muhamad I, Ahmed S (2023) J Phys Chem C 127:1198–1208

    Article  Google Scholar 

  8. Zhu Z, Jiang T, Ali M (2022) Chem Rev 122:16610–16751

    Article  PubMed  CAS  Google Scholar 

  9. Shi X, Liu W, Zhao S (2022) ACS Appl Energy Mater 5:12925–12936

    Article  CAS  Google Scholar 

  10. Sun K, Long H, Li H (2022) ACS Appl Energy Mater 5:11947–11963

    Article  CAS  Google Scholar 

  11. Feng Y, Chenhao Xu (2022) ACS Appl Nano Mater 5:13136–13148

    Article  CAS  Google Scholar 

  12. Ells AW, Evans ML (2022) Chem Mater 34:7460–7467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Dong X, Zhao R (2022) ACS Appl Energy Mater 5:8526–8537

    Article  CAS  Google Scholar 

  14. Yu J, Wei Y, Meng B (2021) Vacuum 193:110535

    Article  CAS  Google Scholar 

  15. Zheng G, Deng Y (2023) Vacuum 213:112073

    Article  CAS  Google Scholar 

  16. Song J, Guo S (2021) Vacuum 186:110044

    Article  CAS  Google Scholar 

  17. Oku T, Kuno M (2003) Diam Relat Mater 12:840

    Article  CAS  Google Scholar 

  18. Han L, Krstic P (2017) Nanotechnology 28:701

    Article  Google Scholar 

  19. Najafi M (2017) Can J Chem 95:687

    Article  CAS  Google Scholar 

  20. Hosseinian A, Soleimani S (2010) Phys Lett A 2017:381

    Google Scholar 

  21. Wu H (2012) Int J Hydrogen Energy 37:14336

    Article  CAS  Google Scholar 

  22. Ayub K (2016) J Mater Chem C 4:10919

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2006) J Comput Chem Theory Comput 2:1009–1018

    Article  CAS  Google Scholar 

  24. Becke AD (1993) J Chem Phys 98:5648–5642

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chablowski CF (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  26. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  27. Boese AD, Martin JML, Handy NC (2003) J Chem Phys 119:3005–3014

    Article  CAS  Google Scholar 

  28. Zhao Y, Truhlar DG (2005) J Phys Chem A 109:5656–5667

    Article  PubMed  CAS  Google Scholar 

  29. Ferre-Vilaplana A (2005) J Chem Phys 122:104709

    Article  PubMed  CAS  Google Scholar 

  30. Vilela Oliveira D, Laun J, Bredow T (2019) J Comput Chem 15:2364–2376

    Article  Google Scholar 

  31. Zheng B, Liu Y, Yu M, Jin Y, Zhang Q, Chen Q (2022). Chin Phys B. https://doi.org/10.1088/1674-1056/acae76

    Article  Google Scholar 

  32. Qiu C, Jiang L, Gao Y, Sheng L (2023) Mater Des 230:111952

    Article  CAS  Google Scholar 

  33. Zhang X, Wang Y, Yuan X, Shen Y, Lu Z, Wang Z (2022). IEEE Trans Transp Electrification. https://doi.org/10.1109/TTE.2022.3194034

    Article  Google Scholar 

  34. Li S, Chen J, He X, Zheng Y, Yu C, Lu H (2023) Appl Surf Sci 623:157036

    Article  CAS  Google Scholar 

  35. Song Z, Shao X, Wu W, Liu Z, Yang M, Liu M, Wang H (2023) Molecules 28. https://doi.org/10.3390/molecules28031358

  36. Quan R, Li Z, Liu P, Li Y, Chang Y, Yan H (2023). Fuel Cells. https://doi.org/10.1002/fuce.202200121

    Article  Google Scholar 

  37. Dang W, Liao S, Yang B, Yin Z, Liu M, Yin L, Zheng W (2023) J Energy Storage 59:106469

    Article  Google Scholar 

  38. Yu H, Chen Y, Wei W, Ji X, Chen L (2022). ACS Nano. https://doi.org/10.1021/acsnano.2c03398

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Chen Y, Yu H, Liu W, Kuang G, Mei L, Chen L (2022) Adv Func Mater 32:2205600

    Article  CAS  Google Scholar 

  40. Ren R, Lai F, Lang X, Li L, Yao C, Cai K (2023) Appl Surf Sci 613:156003

    Article  CAS  Google Scholar 

  41. Shi M, Wang R, Li L, Chen N, Xiao P, Yan C, Yan X (2022) Adv Funct Mater 2209777. https://doi.org/10.1002/adfm.202209777

  42. Zhang X, Tang Y, Zhang F, Lee C (2016) Adv Energy Mater 6:1502588

    Article  Google Scholar 

  43. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Nat Chem 10:667–672

    Article  PubMed  CAS  Google Scholar 

  44. Wei Y, Tang B, Liang X, Zhang F, Tang Y (2023). Adv Mater. https://doi.org/10.1002/adma.202302086

    Article  PubMed  Google Scholar 

  45. Liu Q, Chen Q, Tang Y, Cheng H (2023) Electrochem Energ Rev 6:15

    Article  CAS  Google Scholar 

  46. Chen C, Lee C, Tang Y (2023) Nano-Micro Lett 15:121

    Article  Google Scholar 

  47. Wei T, Lu J, Zhang P, Yang G, Sun C, Zhou Y, Tang Y (2022) Chin Chem Lett. 107947. https://doi.org/10.1016/j.cclet.2022.107947

  48. Fu M, Chen W, Lei Y, Yu H, Lin Y, Terrones M (2023) Adv Mater. 2300940. https://doi.org/10.1002/adma.202300940

  49. Zhang Z, Feng L, Liu H, Wang L, Wang S, Tang Z (2021) Inorg Chem Front 9:35–43

    Article  Google Scholar 

  50. Sha L, Sui B, Wang P, Gong Z, Zhang Y, Wu Y, Shi F (2023) J Colloid Interface Sci 647:421–428

    Article  PubMed  CAS  Google Scholar 

  51. He Y, Wang F, Du G, Pan L, Wang K, Gerhard R, Trnka P (2022). High Voltage. https://doi.org/10.1049/hve2.12278

    Article  Google Scholar 

  52. Xia H, Zan L, Yuan P, Qu G, Dong H, Wei Y, Zhang J (2023) Angew Chem Int Ed 62:e202218282

    Article  CAS  Google Scholar 

  53. Xie J, Wei X, Bo X, Zhang P, Chen P, Hao W, Yuan M (2023) Front Energy Res 11. https://doi.org/10.3389/fenrg.2023.1180881

  54. Hao W, Xie J (2021) J Electrochem Energy Convers Storage 18:020909

    Article  CAS  Google Scholar 

  55. Shi M, Wang R, Li L, Chen N, Xiao P, Yan C, Yan X (2022) Adv Funct Mater. 2209777. https://doi.org/10.1002/adfm.202209777

  56. Niknam B, Aboutalebi FH, Ma W, Nejad RM (2021) Structures 34:4986–4998

    Article  Google Scholar 

  57. Ma W (2021) Doctoral dissertation, University of Nevada, Las Vegas. https://doi.org/10.34917/25374066

  58. Li X, Shang Z, Peng F, Li L, Zhao Y, Liu Z (2021) J Power Sources 512:230512

    Article  CAS  Google Scholar 

  59. Jiang J, Zhang T, Chen D (2021) IEEE Trans Power Electron 36:10214–10223

    Article  Google Scholar 

  60. Wang J, Zhang F, Liu H, Ding J, Gao C (2020) CSEE J Power Energy Syst 7:232–240

    Google Scholar 

  61. Zhang S, Wang J, Liu H, Tong J, Sun Z (2021) Neural Comput Appl 33:821–835

    Article  Google Scholar 

  62. Berry L, Wheatley G, Ma W, Nejad RM, Berto F (2022) Forces Mech 7:100096

    Article  Google Scholar 

  63. Hashemi SA, Farhangdoost K, Ma W, Moghadam DG, Nejad RM, Berto F (2022) Theoret Appl Fract Mech 122:103573

    Article  Google Scholar 

  64. Nejad RM, Sina N, Ma W, Liu Z, Berto F, Gholami A (2022) Int J Fatigue 162:106975

    Article  Google Scholar 

  65. Ma W (2022) Columbus, Ohio, USA. V009T12A020. ASME. https://doi.org/10.1115/IMECE2022-94840

  66. Hou M, Li Y, Peng F, DaneshvarRouyendegh B (2023) Energy Sources A Recover Utilization Environ Eff 45:3019–3040

    Article  CAS  Google Scholar 

  67. Peng F, Xie X, Wu K, Zhao Y, Ren L (2023) Energy Convers Manage 276:116501

    Article  Google Scholar 

  68. Zhang F, Zhu H, Zhou H, Guo J, Huang B (2017) SPE J 22:632–644

    Article  CAS  Google Scholar 

  69. Chen B, Sun G, Li H (2022) Emerg Manag Sci Technol 2:11. https://doi.org/10.48130/EMST-2022-0011

    Article  Google Scholar 

  70. Shou Kai Y, Ling Mei Q, Jun M (2022) Oncol Res 30:13–22

    Article  Google Scholar 

Download references

Acknowledgements

“Liaocheng University Initiation Fund for Doctoral Research” Research on the identification, quantification and energy management based on inconsistent parameters of Li-ion battery (No.318051906) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (China University of Mining and Technology 2011).

Author information

Authors and Affiliations

Authors

Contributions

Lipeng Xu: Conceptualization, Methodology, Chongwang Tian: Software, Validation, Chunjiang Bao: Data Curation, Writing—Original Draft, Tonggang Liu: Writing—Review & Editing, Visualization, Hengchao Xia: Formal analysis, Investigation Resources.

Corresponding authors

Correspondence to Lipeng Xu or Tonggang Liu.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

I confirmed

Consent for Publication

I confirmed

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Tian, C., Bao, C. et al. Potential of Silicon and Carbon Nanocages (C38, F-C38, Cl-C38, Si38, F-Si38, Cl-Si38) as Anode Materials in Li-ion Battery and Mg-ion Battery. Silicon 15, 7293–7299 (2023). https://doi.org/10.1007/s12633-023-02580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02580-7

Keywords

Navigation