Skip to main content
Log in

Low-Cost Pathways to Synthesize Silica-Smectite Clay-Based Composites

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present study aimed to use rice husk as a natural silica precursor in the fabrication of silica-smectite composites. A local smectite clay was respectively mixed with 1) silica sludge from rice husk ash after an acid treatment, 2) an aqueous sodium silicate solution from the alkaline dissolution of silica sludge, and 3) a nanosilica powder obtained after the hydroxylation/polymerization of a sodium silicate solution. Products from the three different synthetic pathways were investigated by X-ray diffraction; Fourier infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, and BET specific surface area (SSA) measurements. All techniques showed a heterogeneous morphology, where the distribution of silica particles in the clay matrix changed with each synthetic pathway. For the silica sludge synthetic pathway, a predominantly three-dimensional-like structure with a phyllosilicate matrix skeleton was obtained. For the pathway using a silicate solution, an amorphous compound with limited intergranular cohesion containing silicate agglomerates intercalated between clay sheets was found. The nanosilica reinforced pathway led to a packed morphology with a regular distribution of silica phases in the clay matrix. In all the synthesized composites, the amorphous silica phase was identified, with a potential higher reactivity and SSA of 228, 257, and 300 m2/g for pathways 1, 2, and 3, respectively. Correspondingly, the microstructure evidenced both an increased porosity and an increase in chemically active sites. Consequently, the obtained products are potential multifunctional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The materials used and the data are all mentioned in the material and methods sections.

References

  1. Fazeli M, Florez JP, Simão RA (2019) Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Compos Part B 163:207–216

    Article  CAS  Google Scholar 

  2. Rangappa SM, Siengchin S, Dhakal HN (2020) Green-composites: ecofriendly and sustainability. Appl Sci Eng Progress 13:183–184

    Article  Google Scholar 

  3. Lin Y-S, Abadeer N, Haynes CL (2011) Stability of small mesoporous silica nanoparticles in biological media. Chem Commun 47:532–534

    Article  CAS  Google Scholar 

  4. Le VH, Thuc CNH, Thuc HH (2013) Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:1–10

    Article  Google Scholar 

  5. Salimian S, Zadhoush A, Naeimirad M et al (2018) A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites. Polym Compos 39:3383–3408

    Article  CAS  Google Scholar 

  6. Linhares T, de Amorim MTP, Durães L (2019) Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J Mater Chem A 7:22768–22802

    Article  CAS  Google Scholar 

  7. Jeelani PG, Mulay P, Venkat R, Ramalingam C (2020) Multifaceted application of silica nanoparticles. A review. Silicon 12:1337–1354

    Article  CAS  Google Scholar 

  8. Yang Y, Zhang M, Song H, Yu C (2020) Silica-based nanoparticles for biomedical applications: from nanocarriers to biomodulators. Acc Chem Res 53:1545–1556

    Article  PubMed  CAS  Google Scholar 

  9. Zhao S, Siqueira G, Drdova S et al (2020) Additive manufacturing of silica aerogels. Nature 584:387–392

    Article  PubMed  CAS  Google Scholar 

  10. Zych Ł, Osyczka AM, Łacz A et al (2021) How surface properties of silica nanoparticles influence structural, microstructural and biological properties of polymer nanocomposites. Materials 14:843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Li G-J, Zhang X-H, Kawi S (1999) Relationships between sensitivity, catalytic activity, and surface areas of SnO2 gas sensors. Sensors Actuators B Chem 60:64–70

    Article  CAS  Google Scholar 

  12. Feng J, Hu X, Yue PL (2006) Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Res 40:641–646

    Article  PubMed  CAS  Google Scholar 

  13. Zou L, Li L, Song H, Morris G (2008) Using mesoporous carbon electrodes for brackish water desalination. Water Res 42:2340–2348

    Article  PubMed  CAS  Google Scholar 

  14. Chmielarz L, Gil B, Kuśtrowski P et al (2009) Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica–titania pillars—synthesis and characterization. J Solid State Chem 182:1094–1104

    Article  CAS  Google Scholar 

  15. Patel HA, Somani RS, Bajaj HC, Jasra RV (2010) Synthesis of organoclays with controlled particle size and whiteness from chemically treated Indian bentonite. Ind Eng Chem Res 49:1677–1683

    Article  CAS  Google Scholar 

  16. Zhang H-F, Yang X-H, Wang Y (2011) Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends Food Sci Technol 22:672–688

    Article  CAS  Google Scholar 

  17. Janaki V, Vijayaraghavan K, Ramasamy A et al (2012) Competitive adsorption of reactive orange 16 and reactive brilliant blue R on polyaniline/bacterial extracellular polysaccharides composite—a novel eco-friendly polymer. J Hazard Mater 241:110–117

    Article  PubMed  Google Scholar 

  18. Bergaya F, Detellier C, Lambert J-F, Lagaly G (2013) Introduction to clay–polymer nanocomposites (CPN). In: Developments in clay science. Elsevier, pp 655–677

  19. El Wardi FZ, Cherki A, Mounir S et al (2019) Thermal characterization of a new multilayer building material based on clay, cork and cement mortar. Energy Procedia 157:480–491. https://doi.org/10.1016/j.egypro.2018.11.212

    Article  Google Scholar 

  20. Levard C, Hamdi-Alaoui K, Baudin I et al (2021) Silica-clay nanocomposites for the removal of antibiotics in the water usage cycle. Environ Sci Pollut Res 28:7564–7573. https://doi.org/10.1007/s11356-020-11076-5

    Article  CAS  Google Scholar 

  21. Sohling U, Ruf F, Schurz K et al (2009) Natural mixture of silica and smectite as a new clayey material for industrial applications. Clay Miner 44:525–537. https://doi.org/10.1180/claymin2009.044.4.525

    Article  CAS  Google Scholar 

  22. Radnóczi GZ, Dodony E, Battistig G et al (2016) Structural characterization of nanostructures grown by Ni metal induced lateral crystallization of amorphous-Si. J Appl Phys 119:065303. https://doi.org/10.1063/1.4941349

    Article  CAS  Google Scholar 

  23. Endo T (1981) Properties of silica-intercalated Hectorite1. Clay Clay Miner 29:153–156. https://doi.org/10.1346/CCMN.1981.0290210

    Article  CAS  Google Scholar 

  24. Letaief S, Ruiz-Hitzky E (2003) Silica–clay nanocomposites. Chem Commun 15:2996–2997. https://doi.org/10.1039/B310854F

    Article  Google Scholar 

  25. Seeni Meera KM, Murali Sankar R, Murali A et al (2012) Sol–gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings. Colloids Surf B: Biointerfaces 90:204–210. https://doi.org/10.1016/j.colsurfb.2011.10.018

    Article  CAS  Google Scholar 

  26. Sadek OM, Reda SM, Al-Bilali RK (2013) Preparation and characterization of silica and clay-silica core-shell nanoparticles using sol-gel method. ANP 02:165–175. https://doi.org/10.4236/anp.2013.22025

    Article  CAS  Google Scholar 

  27. Dong W, Li W, Yu K et al (2003) Synthesis of silica nanotubes from kaolin clay. Chem Commun 11:1302–1303

    Article  Google Scholar 

  28. Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M (2012) Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). Int Nano Lett 2:1–8

    Article  Google Scholar 

  29. Djangang C, Mlowe S, Njopwouo D, Neerish R (2015) One-step synthesis of silica nanoparticles by thermolysis of rice husk ash using non toxic chemicals ethanol and polyethylene glycol. J Appl Chem 4:1218–1226

    CAS  Google Scholar 

  30. Shen Y (2017) Rice husk silica derived nanomaterials for sustainable applications. Renew Sust Energ Rev 80:453–466

    Article  Google Scholar 

  31. Azat S, Korobeinyk AV, Moustakas K, Inglezakis VJ (2019) Sustainable production of pure silica from rice husk waste in Kazakhstan. J Clean Prod 217:352–359. https://doi.org/10.1016/j.jclepro.2019.01.142

    Article  CAS  Google Scholar 

  32. Njimou JR, Godwin J, Pahimi H et al (2021) Biocomposite spheres based on aluminum oxide dispersed with orange-peel powder for adsorption of phenol from batch membrane fraction of olive mill wastewater. Colloids Interface Sci Commun 42:100402

    Article  CAS  Google Scholar 

  33. Tchanang G, Djangang CN, Abi CF et al (2021) Synthesis of reactive silica from kaolinitic clay: effect of process parameters. Appl Clay Sci 207:106087

    Article  CAS  Google Scholar 

  34. Godwin J, Njimou JR, Abdus-Salam N et al (2022) Nanoscale ZnO-adsorbent carefully designed for the kinetic and thermodynamic studies of Rhodamine B. Inorg Chem Commun 138:109287. https://doi.org/10.1016/j.inoche.2022.109287

    Article  CAS  Google Scholar 

  35. Rukzon S, Chindaprasirt P, Mahachai R (2009) Effect of grinding on chemical and physical properties of rice husk ash. Int J Miner Metall Mater 16:242–247. https://doi.org/10.1016/S1674-4799(09)60041-8

    Article  CAS  Google Scholar 

  36. Salazar Hernández M, Salazar Hernández C, Gutiérrez Fuentes A et al (2014) Silica from rice husks employed as drug delivery for folic acid. J Sol-Gel Sci Technol 71:514–521. https://doi.org/10.1007/s10971-014-3378-5

    Article  CAS  Google Scholar 

  37. Rajanna SK, Kumar D, Vinjamur M, Mukhopadhyay M (2015) Silica aerogel Microparticles from Rice husk ash for drug delivery. Ind Eng Chem Res 54:949–956. https://doi.org/10.1021/ie503867p

    Article  CAS  Google Scholar 

  38. de Lara Andrade J, Moreira CA, Oliveira AG et al (2022) Rice husk-derived mesoporous silica as a promising platform for chemotherapeutic drug delivery. Waste Biomass Valor 13:241–254. https://doi.org/10.1007/s12649-021-01520-z

    Article  CAS  Google Scholar 

  39. Saceda J-JF, de Leon RL, Rintramee K et al (2011) Properties of silica from rice husk and rice husk ash and their utilization for zeolite y synthesis. Quím Nova 34:1394–1397. https://doi.org/10.1590/S0100-40422011000800018

    Article  CAS  Google Scholar 

  40. Adjia HZ (2012) Adsorption des métaux lourds des eaux usées par les argiles alluviales de l'Extrême-Nord Cameroun. Université de Lorraine, France

    Google Scholar 

  41. Nkalih MA (2016) Cartographie et propriétés physico-chimiques des argiles de Foumban (Ouest-Cameroun). Université de Liège, Belgique

    Google Scholar 

  42. Nguetnkam JP, Kamga R, Villiéras F et al (2011) Alteration of cameroonian clays under acid treatment. Comparison with industrial adsorbents. Appl Clay Sci 52:122–132. https://doi.org/10.1016/j.clay.2011.02.009

    Article  CAS  Google Scholar 

  43. Woumfo D, Kamga R, Figueras F, Njopwouo D (2007) Acid activation and bleaching capacity of some Cameroonian smectite soil clays. Appl Clay Sci 37:149–156

    Article  CAS  Google Scholar 

  44. Mache JR, Signing P, Mbey JA et al (2015) Mineralogical and physico-chemical characteristics of Cameroonian smectitic clays after treatment with weakly sulfuric acid. Clay Miner 50:649–661. https://doi.org/10.1180/claymin.2015.050.5.08

    Article  CAS  Google Scholar 

  45. Prasad R, Pandey M (2012) Rice husk ash as a renewable source for the production of value added silica gel and its application: an overview. Bull Chem React Eng Catal 7:1–25. https://doi.org/10.9767/bcrec.7.1.1216.1-25

    Article  Google Scholar 

  46. Pouangam Ngalani G, Ondo JA, Njimou JR et al (2023) Effect of coffee husk and cocoa pods biochar on phosphorus fixation and release processes in acid soils from West Cameroon. Soil Use and Management 39(2):817–832. https://doi.org/10.1111/sum/12894

  47. Brown G (1961) The X-ray identification and crystal structures of clay minerals. Mineralogical Society, London

    Google Scholar 

  48. Krishnarao RV, Subrahmanyam J, Jagadish Kumar T (2001) Studies on the formation of black particles in rice husk silica ash. J Eur Ceram Soc 21:99–104. https://doi.org/10.1016/S0955-2219(00)00170-9

    Article  CAS  Google Scholar 

  49. Imoisili PE, Ukoba KO, Jen T-C (2020) Green technology extraction and characterisation of silica nanoparticles from palm kernel shell ash via sol–gel. J Mater Res Technol 9:307–313. https://doi.org/10.1016/j.jmrt.2019.10.059

    Article  CAS  Google Scholar 

  50. Temuujin J, Burmaa G, Amgalan J et al (2001) No title found. J Porous Mater 8:233–238. https://doi.org/10.1023/A:1012244924490

    Article  CAS  Google Scholar 

  51. Xia M, Jiang Y, Zhao L et al (2010) Wet grinding of montmorillonite and its effect on the properties of mesoporous montmorillonite. Colloids Surf A Physicochem Eng Asp 356:1–9. https://doi.org/10.1016/j.colsurfa.2009.12.014

    Article  CAS  Google Scholar 

  52. Madejová J, Komadel P, Číčel B (1994) Infrared study of octahedral site populations in smectites. Clay Miner 29:319–326. https://doi.org/10.1180/claymin.1994.029.3.03

    Article  Google Scholar 

  53. Villar MV, Gómez-Espina R, Gutiérrez-Nebot L (2012) Basal spacings of smectite in compacted bentonite. Appl Clay Sci 65–66:95–105. https://doi.org/10.1016/j.clay.2012.05.010

  54. El Messabeb-Ouali A, Benna-Zayani M, Ayadi-Trabelsi M, Sauvé S (2013) Morphology, Structure, Thermal Stability, XR-Diffraction, and Infrared Study of Hexadecyltrimethylammonium Bromide–Modified Smectite. Int J Chem 5:12. https://doi.org/10.5539/ijc.v5n2p12

  55. Belghazdis M, Hachem E-K (2022) Clay and clay minerals: a detailed review. Int J Recent Technol Appl Sci 4:54–75. https://doi.org/10.36079/lamintang.ijortas-0402.367

  56. Djangang CN, Tealdi C, Cattaneo AS et al (2015) Cold-setting refractory composites from cordierite and mullite–cordierite design with geopolymer paste as binder: thermal behavior and phase evolution. Mater Chem Phys 154:66–77. https://doi.org/10.1016/j.matchemphys.2015.01.046

  57. Ali B, Ahmed H, Ali Qureshi L et al (2020) Enhancing the hardened properties of recycled concrete (RC) through synergistic incorporation of Fiber reinforcement and silica fume. Materials 13:4112. https://doi.org/10.3390/ma13184112

  58. Tong H, Sengupta S, Tanaka H (2020) Emergent solidity of amorphous materials as a consequence of mechanical self-organisation. Nat Commun 11:4863. https://doi.org/10.1038/s41467-020-18663-7

  59. Sulpizi M, Gaigeot M-P, Sprik M (2012) The silica–water interface: how the Silanols determine the surface acidity and modulate the water properties. J Chem Theory Comput 8:1037–1047. https://doi.org/10.1021/ct2007154

  60. Endo T (1980) Intercalation of silica in Smectite1. Clay Clay Miner 28:105–110. https://doi.org/10.1346/CCMN.1980.0280205

Download references

Acknowledgments

The authors are grateful to Professor Nicholas Deardorff (SEM Lab), Indiana University of Pennsylvania, USA, and Philippe Blanchart, University of Limoges, France, for their assistance in conducting some analyses in their respective Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Jean Marie Kepdieu: Investigation, Roles/Writing - original draft, Data curation. Njiomou Djangang Chantale: Conceptualization, Methodology; Writing - review & editing, Visualization: Validation; Supervision. Jacques Romain Njimou: Investigation, Writing - review & editing. Sanda Andrada Maicaneanu: Methodology, Writing - review & editing. Jacques Richard Mache: Resources. Gustave Tchanang: Writing - review & editing.

Corresponding author

Correspondence to Chantale Njiomou Djangang.

Ethics declarations

Ethics Approval

Not applicable: Authors declare no research involving human participants and/or animals was conducted.

Consent to Participate

All the authors are voluntarily participating for the submission of this research work.

Consent for Publication

The authors confirm that this manuscript has not been submitted or published previously to any other journal and give full consent for publication of this research work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kepdieu, J.M., Djangang, C.N., Njimou, J.R. et al. Low-Cost Pathways to Synthesize Silica-Smectite Clay-Based Composites. Silicon 15, 7345–7356 (2023). https://doi.org/10.1007/s12633-023-02569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02569-2

Keywords

Navigation