Skip to main content
Log in

Simultaneous Influence of Silanized Bio-Silica and Graphene Oxide on the Mechanical characteristics and Fracture Toughness of Synthesized Epoxidized Soybean Oil

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the current work, the epoxidized soybean oil (ESO) based bio-nanocomposite filled with both nano-silica and graphene oxide was fabricated using MHHPA as a hot curing agent and casting method. The ESO was directly synthesized from vegetable oil the via in-situ method. The bio-silica was prepared from rice husk using a simple combination technique of acid soaking and calcination. The graphene oxide (GO) was also obtained from graphite using Hummer’s method. The chemical structure of ESO, silica, and GO was analyzed using the FTIR technique. The crystal structure of GO was confirmed by the XRD method. The good dispersion of silica and GO in ESO was done with help of a high-speed mechanical stirrer. The combination of silica and GO helped to improve the thermal property of cured ESO. The bio-nanocomposite with the presence of 1.5 wt.% of GO and 20 wt.% of silica showed the best mechanical properties with improvement up to 122% of tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Tangthana-umrung K, Zhang X, Gresil M (2022) Synergistic toughening on hybrid epoxy nanocomposites by introducing engineering thermoplastic and carbon-based nanomaterials. Polym 245:124703

    Article  CAS  Google Scholar 

  2. Dhanaraju G, Ben BS, Pittala RK (2022) Thermally remendable bismalemide-MWCNT/DA-epoxy nanocomposite via Diels-Alder bonding. Polym 245:124734

    Article  CAS  Google Scholar 

  3. Chi Z, Wang C, Dong Y, Zhou Y, Xu H, Islam Z, Qian C, Fu Y (2022) MXene/epoxy-based shape memory nanocomposites with highly stable thermal-mechanical coupling effect for constructing an effective information transmission medium. Compos Sci Technol 225:109505

    Article  CAS  Google Scholar 

  4. Hwangbo H, Lee J, Kim G (2022) Mechanically and biologically enhanced 3D-printed HA/PLLA/dECM biocomposites for bone tissue engineering. Int J Bio Macromol. 218:9–21

    Article  CAS  Google Scholar 

  5. Hackenhaar CR, Rosa CF, Flores EEE, Santagapita PR, Klein MP, Hertz PF (2022) Development of a biocomposite based on alginate/gelatin crosslinked with genipin for β-galactosidase immobilization: Performance and characteristics. Carbohyd Polym 291:119483

    Article  CAS  Google Scholar 

  6. Li L, Yue H, Wu Q, P. Fernández-Blázquez J, S. Shuttleworth P, H. Clark J, Guo J (2022) Unveiling the reinforcement effects in cottonseed protein/polycaprolactone blend biocomposites. Compos Sc Technol. 225: 109480

  7. Nguyen V-H, Vu CM, Choi HJ, Kien BX (2019) Nanosilica Extracted from Hexafluorosilicic Acid of Waste Fertilizer as Reinforcement Material for Natural Rubber: Preparation and Mechanical Characteristics. Materials 12(17):2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Y-Y, He J, Li Y.-D, Zhao X.-L, Zeng J.-B (2020) Biobased epoxy vitrimer from epoxidized soybean oil for reprocessable and recyclable carbon fiber reinforced composite. Compos Commu. 22: 100445

  9. Vu CM, Vu HT, Choi HJ (2015) Fabrication of natural rubber/epoxidized natural rubber/nanosilica nanocomposites and their physical characteristics. Macromol 23:284–290

    Article  CAS  Google Scholar 

  10. Mauro CD, Genua A, Rymarczyk M, Dobbels C, Malburet S, Graillot A, Mija A (2021) Chemical and mechanical reprocessed resins and bio-composites based on five epoxidized vegetable oils thermosets reinforced with flax fibers or PLA woven. Compos Sci Technol 205:108678

    Article  Google Scholar 

  11. Samper MD, Petrucci R, Sanchez-Nacher L, Balart R, Kenny JM (2015) Properties of composite laminates based on basalt fibers with epoxidized vegetable oils. Mater Design 72:9–15

    Article  CAS  Google Scholar 

  12. Mauro CD, Malburet S, Genua A, Graillot A, Mija A (2020) Sustainable Series of New Epoxidized Vegetable Oil-Based Thermosets with Chemical Recycling Properties. Biomacromol 21:3923–3935

    Article  Google Scholar 

  13. Vu CM, Nguyen V-H, Bach Q-V (2020) Phosphorous-jointed epoxidized soybean oil and rice husk-based silica as the novel additives for improvement mechanical and flame retardant of epoxy resin. J Fire Sci 38:3–27

    Article  CAS  Google Scholar 

  14. Bach Q-V, Vu CM, Vu HT, Vu HB, Nguyen TV, Chang SW, Nguyen DD, Thi TAD, Doan VN (2020) Significant enhancement of fracture toughness and mechanical properties of epoxy resin using CTBN-grafted epoxidized linseed oil. J Appl Polym Sci 137:48276

    Article  CAS  Google Scholar 

  15. Leveneur S, Zheng J, Taouk B, Burel F, Wärnå J, Salmi T (2014) Interaction of thermal and kinetic parameters for a liquid–liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. J Tai Inst Chem Eng 45:1449–1458

    Article  CAS  Google Scholar 

  16. Mauro CD, Genua A, Mija A (2022) Fully bio-based reprocessable thermosetting resins based on epoxidized vegetable oils cured with itaconic acid. Indus Crops Prod 185:115116

    Article  Google Scholar 

  17. Madhusudhana AM, Mohana KNS, Hegde MB, Nayak SR, Rajitha K, Kumar MCS (2022) Functionalized graphene oxide dispersed polyvinyl alcohol-epoxidized linseed oil composite: An eco-friendly and promising anticorrosion coating material. Colloid Surf A: Physicochem Eng Aspects 650:129382

    Article  CAS  Google Scholar 

  18. Vu CM, Nguyen DD, Sinh LH et al (2017) Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics. Polym Test 61:150–161

    Article  CAS  Google Scholar 

  19. Tan SG, Ahmad Z, Chow WS (2013) Relationships of cure kinetics and processing for epoxidized soybean oil bio-thermoset. Indus Crops Prod 43:378–385

    Article  CAS  Google Scholar 

  20. Baskaran K, Ali M, Gingrich K et al (2022) Sol-gel derived silica: A review of polymer-tailored properties for energy and environmental applications. Micropor Mesopor Mater 336:111874

    Article  CAS  Google Scholar 

  21. Bach Q-V, Vu CM, Vu HT et al (2019) Enhancing mode I and II interlaminar fracture toughness of carbon fiber-filled epoxy-based composites using both rice husk silica and silk fibroin electrospun nanofibers. High Perform Polym 31:1195–1203

    Article  CAS  Google Scholar 

  22. Fatimah I, Fadillah G, Purwiandono G et al (2022) Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. Inor Chem Commu 137:109213

    Article  CAS  Google Scholar 

  23. Huang Y, Li P, Zhao R et al (2022) Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharma 151:113053

    Article  CAS  Google Scholar 

  24. Islam E, Kumar A, Hakkim NL et al (2022) Silica Reinforced Polymer Composites: Properties, Characterization and Applications. Encycl Mater Plast Polym 2:1057–1074

    Google Scholar 

  25. Gao X, Yang W, Wang C et al (2022) Study on properties of carbon-coated silica prepared by polymer pyrolysis reinforced rubber composites. Polym Test 110:107583

    Article  CAS  Google Scholar 

  26. Raghul KS, Logesh M, Kisshore RK et al (2021) Mechanical behaviour of sisal palm glass fiber reinforced composite with addition of nano silica. Mater Today: Proceed 37:1427–1431

    Article  CAS  Google Scholar 

  27. Mahmud MS, Daud FDM, Sarifuddin N et al (2022) Size reduction via planetary milling and acid leaching effect on rice husk ash-derived nano-silica. Mater Today: Proceed. https://doi.org/10.1016/j.matpr.2022.06.516

    Article  Google Scholar 

  28. Chundawat NS, Parmar BS, Deuri AS et al (2022) Rice husk silica as a sustainable filler in the tire industry. Arabian J Chem 15:104086

    Article  CAS  Google Scholar 

  29. Steven S, Restiawaty E, Bindar Y (2021) Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect. Renew Sustain Ener Reviews 149:111329

    Article  CAS  Google Scholar 

  30. Han X, Liang J, Fukuda S et al (2022) Sodium alginate–silica composite aerogels from rice husk ash for efficient absorption of organic pollutants. Biomass Bioenergy 159:106424

    Article  CAS  Google Scholar 

  31. Kumar S, Mahadevaswamy L, Hemaraju HR et al (2022) Experimental investigation of three-body abrasive wear behavior of rice husk filled polylactic acid (PLA) composites. Mater Today Proceed 52:599–603

    Article  CAS  Google Scholar 

  32. Pham TD, Vu CM, Choi HJ (2017) Enhanced fracture toughness and mechanical properties of epoxy resin with rice husk-based nano-silica. Polym Sci Ser A 59:437–444

    Article  CAS  Google Scholar 

  33. Ma L, Zhai Y, Wan C et al (2022) Efficient thermo-oxidative reclamation of green tire rubber and silanized-silica/rubber interface characterization. Polym Degrad Stab 196:109827

    Article  CAS  Google Scholar 

  34. Chiang C-H, Ishida H, LKoenig J (1980) The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Inter Sci. 74: 396–404

  35. Kalyan S, Bhosale A, Patil PD et al (2022) CuS/GO composite for high performance Lithium ion storage. Appl Surf Sci Adv 11:100285

    Article  Google Scholar 

  36. Zheng M, Xu L, Chen C et al (2022) MOFs and GO-based composites as deliberated materials for the adsorption of various water contaminants. Sep Purif Technol 294:121187

    Article  CAS  Google Scholar 

  37. Ma L, Song G, Zhang X et al (2021) Attaching SiO2 nanoparticles to GO sheets via amino-terminated hyperbranched polymer for epoxy composites: Extraordinary improvement in thermal and mechanical properties. Eur Polym J 157:110677

    Article  CAS  Google Scholar 

  38. Bach Q-V, Vu CM, Vu HT et al (2020) Epoxidized soybean oil grafted with CTBN as a novel toughener for improving the fracture toughness and mechanical properties of epoxy resin. Polym J 52:345–357

    Article  CAS  Google Scholar 

  39. Zhou RL, Hu J, Kuixiang, et al. (2011) Testing method for epoxide equivalent.CN102692443A

  40. Chai PV, Mahmoudi E, Teow YH et al (2017) Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. J Wat Proc Eng 15:83–88

    Article  Google Scholar 

  41. Vu CM, Bach Q-V (2020) Effects of DOPO-Grafted Epoxidized Soybean Oil on Fracture Toughness and Flame Retardant of Epoxy Resin/Rice Husk Silica Hybrid. Macromol Res 28:826–834

    Article  CAS  Google Scholar 

  42. Nguyen LT, Vu CM, Phuc BT et al (2019) Simultaneous effects of silanized coal fly ash and nano/micro glass fiber on fracture toughness and mechanical properties of carbon fiber-reinforced vinyl ester resin composites. Polym Eng Sci 59:584–591

    Article  CAS  Google Scholar 

  43. Vu CM, Liem TN, Thai VN et al (2014) Effect of Additive-added Epoxy on Mechanical and Dielectric Characteristics of Glass Fiber Reinforced Epoxy Composites. Polym Kor 38:726–734

    Article  CAS  Google Scholar 

  44. Nguyen DD, Vu CM, Choi HJ (2018) Improvement of the mode I interlaminar fracture toughness of glass fiber/epoxy composites using polystyrene electrospun nanofibres. Polym Bull 75:5089–5102

    Article  CAS  Google Scholar 

  45. Vu CM, Choi HJ (2016) Fracture toughness and surface morphology of micro/nano sized fibrils-modified epoxy resin. Polym Sci Ser A 58:464–470

    Article  CAS  Google Scholar 

  46. Vu CM, Nguyen DD, Sinh LH et al (2018) Improvement the mode I interlaminar fracture toughness of glass fiber reinforced phenolic resin by using epoxidized soybean oil. Polym Bull 75:4769–4782

    Article  CAS  Google Scholar 

  47. Ding J, Peng W, Luo T (2017) Study on the curing reaction kinetics of a novel epoxy system. RSC Adv 7:6981–6987

    Article  CAS  Google Scholar 

  48. Domun N, Hadavinia H, Zhang T et al (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status. Nanoscale 7:10294–10329

    Article  CAS  PubMed  Google Scholar 

  49. Zotti A, Zuppolini S, Borriello A et al (2020) Thermal and mechanical characterization of an aeronautical graded epoxy resin loaded with hybrid nanoparticles. Nanomaterials 10:1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnsen BB, Kinloch AJ, Mohammed RD et al (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polym 48:530–541

    Article  CAS  Google Scholar 

  51. Dittanet P, Pearson RA (2013) Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin. Polym 54:1832–1845

    Article  CAS  Google Scholar 

  52. Karger-Kocsis J, Gryshchuk O, Frohlich J et al (2003) Interpenetrating vinylester/epoxy resins modified with organophilic layered silicates. Compos Sci Technol 63:2045–2054

    Article  CAS  Google Scholar 

  53. Marouf BT, Mai Y-W, Bagheri R et al (2016) Toughening of epoxy nanocomposites: nano and hybrid effects. Polym Rev 56:70–112

    Article  CAS  Google Scholar 

  54. Gogoi P, Horo H, Khannam M et al (2015) In situ synthesis of green bionanocomposites based on aqueous citric acid cured epoxidized soybean oil-carboxylic acid functionalized multiwalled carbon nanotubes. Indust Crops Prod 76:346–354

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, first draft of the manuscript and analysis were performed by Cuong Manh Vu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cuong Manh Vu.

Ethics declarations

Ethics Approval

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

All authors voluntarily agree to participate in this review paper.

Consent for Publication

All authors give the permission to the Journal to publish this review paper.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, C.M. Simultaneous Influence of Silanized Bio-Silica and Graphene Oxide on the Mechanical characteristics and Fracture Toughness of Synthesized Epoxidized Soybean Oil. Silicon 15, 4207–4215 (2023). https://doi.org/10.1007/s12633-023-02337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02337-2

Keywords

Navigation